utils.py 6.16 KB
Newer Older
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
"""
Utility functions for link prediction
Most code is adapted from authors' implementation of RGCN link prediction:
https://github.com/MichSchli/RelationPrediction

"""

import numpy as np
import tensorflow as tf
import dgl

#######################################################################
#
# Utility function for building training and testing graphs
#
#######################################################################

def get_adj_and_degrees(num_nodes, triplets):
    """ Get adjacency list and degrees of the graph
    """
    adj_list = [[] for _ in range(num_nodes)]
    for i,triplet in enumerate(triplets):
        adj_list[triplet[0]].append([i, triplet[2]])
        adj_list[triplet[2]].append([i, triplet[0]])

    degrees = np.array([len(a) for a in adj_list])
    adj_list = [np.array(a) for a in adj_list]
    return adj_list, degrees

def sample_edge_neighborhood(adj_list, degrees, n_triplets, sample_size):
    """Sample edges by neighborhool expansion.

    This guarantees that the sampled edges form a connected graph, which
    may help deeper GNNs that require information from more than one hop.
    """
    edges = np.zeros((sample_size), dtype=np.int32)

    #initialize
    sample_counts = np.array([d for d in degrees])
    picked = np.array([False for _ in range(n_triplets)])
    seen = np.array([False for _ in degrees])

    for i in range(0, sample_size):
        weights = sample_counts * seen

        if np.sum(weights) == 0:
            weights = np.ones_like(weights)
            weights[np.where(sample_counts == 0)] = 0

        probabilities = (weights) / np.sum(weights)
        chosen_vertex = np.random.choice(np.arange(degrees.shape[0]),
                                         p=probabilities)
        chosen_adj_list = adj_list[chosen_vertex]
        seen[chosen_vertex] = True

        chosen_edge = np.random.choice(np.arange(chosen_adj_list.shape[0]))
        chosen_edge = chosen_adj_list[chosen_edge]
        edge_number = chosen_edge[0]

        while picked[edge_number]:
            chosen_edge = np.random.choice(np.arange(chosen_adj_list.shape[0]))
            chosen_edge = chosen_adj_list[chosen_edge]
            edge_number = chosen_edge[0]

        edges[i] = edge_number
        other_vertex = chosen_edge[1]
        picked[edge_number] = True
        sample_counts[chosen_vertex] -= 1
        sample_counts[other_vertex] -= 1
        seen[other_vertex] = True

    return edges

def sample_edge_uniform(adj_list, degrees, n_triplets, sample_size):
    """Sample edges uniformly from all the edges."""
    all_edges = np.arange(n_triplets)
    return np.random.choice(all_edges, sample_size, replace=False)

def generate_sampled_graph_and_labels(triplets, sample_size, split_size,
                                      num_rels, adj_list, degrees,
                                      negative_rate, sampler="uniform"):
    """Get training graph and signals
    First perform edge neighborhood sampling on graph, then perform negative
    sampling to generate negative samples
    """
    # perform edge neighbor sampling
    if sampler == "uniform":
        edges = sample_edge_uniform(adj_list, degrees, len(triplets), sample_size)
    elif sampler == "neighbor":
        edges = sample_edge_neighborhood(adj_list, degrees, len(triplets), sample_size)
    else:
        raise ValueError("Sampler type must be either 'uniform' or 'neighbor'.")

    # relabel nodes to have consecutive node ids
    edges = triplets[edges]
    src, rel, dst = edges.transpose()
    uniq_v, edges = np.unique((src, dst), return_inverse=True)
    src, dst = np.reshape(edges, (2, -1))
    relabeled_edges = np.stack((src, rel, dst)).transpose()

    # negative sampling
    samples, labels = negative_sampling(relabeled_edges, len(uniq_v),
                                        negative_rate)

    # further split graph, only half of the edges will be used as graph
    # structure, while the rest half is used as unseen positive samples
    split_size = int(sample_size * split_size)
    graph_split_ids = np.random.choice(np.arange(sample_size),
                                       size=split_size, replace=False)
    src = src[graph_split_ids]
    dst = dst[graph_split_ids]
    rel = rel[graph_split_ids]

    # build DGL graph
    print("# sampled nodes: {}".format(len(uniq_v)))
    print("# sampled edges: {}".format(len(src) * 2))
    g, rel, norm = build_graph_from_triplets(len(uniq_v), num_rels,
                                             (src, rel, dst))
    return g, uniq_v, rel, norm, samples, labels

def comp_deg_norm(g):
    g = g.local_var()
    in_deg = g.in_degrees(range(g.number_of_nodes())).float().numpy()
    norm = 1.0 / in_deg
    norm[np.isinf(norm)] = 0
    return norm

def build_graph_from_triplets(num_nodes, num_rels, triplets):
    """ Create a DGL graph. The graph is bidirectional because RGCN authors
        use reversed relations.
        This function also generates edge type and normalization factor
        (reciprocal of node incoming degree)
    """
    g = dgl.DGLGraph()
    g.add_nodes(num_nodes)
    src, rel, dst = triplets
    src, dst = np.concatenate((src, dst)), np.concatenate((dst, src))
    rel = np.concatenate((rel, rel + num_rels))
    edges = sorted(zip(dst, src, rel))
    dst, src, rel = np.array(edges).transpose()
    g.add_edges(src, dst)
    norm = comp_deg_norm(g)
    print("# nodes: {}, # edges: {}".format(num_nodes, len(src)))
    return g, rel, norm

def build_test_graph(num_nodes, num_rels, edges):
    src, rel, dst = edges.transpose()
    print("Test graph:")
    return build_graph_from_triplets(num_nodes, num_rels, (src, rel, dst))

def negative_sampling(pos_samples, num_entity, negative_rate):
    size_of_batch = len(pos_samples)
    num_to_generate = size_of_batch * negative_rate
    neg_samples = np.tile(pos_samples, (negative_rate, 1))
    labels = np.zeros(size_of_batch * (negative_rate + 1), dtype=np.float32)
    labels[: size_of_batch] = 1
    values = np.random.randint(num_entity, size=num_to_generate)
    choices = np.random.uniform(size=num_to_generate)
    subj = choices > 0.5
    obj = choices <= 0.5
    neg_samples[subj, 0] = values[subj]
    neg_samples[obj, 2] = values[obj]

    return np.concatenate((pos_samples, neg_samples)), labels