README.md 953 Bytes
Newer Older
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
Graph Convolutional Networks (GCN)
============

- Paper link: [https://arxiv.org/abs/1609.02907](https://arxiv.org/abs/1609.02907)
- Author's code repo: [https://github.com/tkipf/gcn](https://github.com/tkipf/gcn). Note that the original code is 
implemented with Tensorflow for the paper. 

Dependencies
------------
- Tensorflow 2.1+
- requests

``bash
pip install tensorflow requests
``

Codes
-----
The folder contains three implementations of GCN:
- `gcn.py` uses DGL's predefined graph convolution module.
- `gcn_mp.py` uses user-defined message and reduce functions.
- `gcn_builtin.py` improves from `gcn_mp.py` by using DGL's builtin functions
   so SPMV optimization could be applied.

Results
-------

Run with following (available dataset: "cora", "citeseer", "pubmed")
```bash
python3 train.py --dataset cora --gpu 0 --self-loop
```

* cora: ~0.810 (0.79-0.83) (paper: 0.815)
* citeseer: 0.707 (paper: 0.703)
* pubmed: 0.792 (paper: 0.790)