train.py 6.86 KB
Newer Older
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
import argparse
import time
import numpy as np
import networkx as nx
import tensorflow as tf
from tensorflow.keras import layers
from dgl import DGLGraph
from dgl.data import register_data_args, load_data
from dgi import DGI, Classifier


def evaluate(model, features, labels, mask):
    logits = model(features, training=False)
    logits = logits[mask]
    labels = labels[mask]
    indices = tf.math.argmax(logits, axis=1)
    acc = tf.reduce_mean(tf.cast(indices == labels, dtype=tf.float32))
    return acc.numpy().item()


def main(args):
    # load and preprocess dataset
    data = load_data(args)
    if args.gpu < 0:
        device = "/cpu:0"
    else:
        device = "/gpu:{}".format(args.gpu)
    with tf.device(device):
        features = tf.convert_to_tensor(data.features, dtype=tf.float32)
        labels = tf.convert_to_tensor(data.labels, dtype=tf.int64)
        train_mask = tf.convert_to_tensor(data.train_mask, dtype=tf.bool)
        val_mask = tf.convert_to_tensor(data.val_mask, dtype=tf.bool)
        test_mask = tf.convert_to_tensor(data.test_mask, dtype=tf.bool)
        in_feats = features.shape[1]
        n_classes = data.num_labels
        n_edges = data.graph.number_of_edges()

        # graph preprocess
        g = data.graph
        # add self loop
        if args.self_loop:
            g.remove_edges_from(nx.selfloop_edges(g))
            g.add_edges_from(zip(g.nodes(), g.nodes()))
        g = DGLGraph(g)
        n_edges = g.number_of_edges()

        # create DGI model
        dgi = DGI(g,
                  in_feats,
                  args.n_hidden,
                  args.n_layers,
                  tf.keras.layers.PReLU(alpha_initializer=tf.constant_initializer(0.25)),
                  args.dropout)

        dgi_optimizer = tf.keras.optimizers.Adam(
            learning_rate=args.dgi_lr)

        # train deep graph infomax
        cnt_wait = 0
        best = 1e9
        best_t = 0
        dur = []
        for epoch in range(args.n_dgi_epochs):
            if epoch >= 3:
                t0 = time.time()

            with tf.GradientTape() as tape:
                loss = dgi(features)
                # Manually Weight Decay
                # We found Tensorflow has a different implementation on weight decay 
                # of Adam(W) optimizer with PyTorch. And this results in worse results.
                # Manually adding weights to the loss to do weight decay solves this problem.
                for weight in dgi.trainable_weights:
                    loss = loss + \
                        args.weight_decay * tf.nn.l2_loss(weight)
                grads = tape.gradient(loss, dgi.trainable_weights)
                dgi_optimizer.apply_gradients(zip(grads, dgi.trainable_weights))

            if loss < best:
                best = loss
                best_t = epoch
                cnt_wait = 0
                dgi.save_weights('best_dgi.pkl')
            else:
                cnt_wait += 1

            if cnt_wait == args.patience:
                print('Early stopping!')
                break

            if epoch >= 3:
                dur.append(time.time() - t0)

            print("Epoch {:05d} | Time(s) {:.4f} | Loss {:.4f} | "
                  "ETputs(KTEPS) {:.2f}".format(epoch, np.mean(dur), loss.numpy().item(),
                                                n_edges / np.mean(dur) / 1000))

        # create classifier model
        classifier = Classifier(args.n_hidden, n_classes)

        classifier_optimizer = tf.keras.optimizers.Adam(learning_rate=args.classifier_lr)

        # train classifier
        print('Loading {}th epoch'.format(best_t))
        dgi.load_weights('best_dgi.pkl')
        embeds = dgi.encoder(features, corrupt=False)
        embeds = tf.stop_gradient(embeds)
        dur = []
        loss_fcn = tf.keras.losses.SparseCategoricalCrossentropy(
            from_logits=True)
        for epoch in range(args.n_classifier_epochs):
            if epoch >= 3:
                t0 = time.time()
            with tf.GradientTape() as tape:
                preds = classifier(embeds)
                loss = loss_fcn(labels[train_mask], preds[train_mask])
                # Manually Weight Decay
                # We found Tensorflow has a different implementation on weight decay 
                # of Adam(W) optimizer with PyTorch. And this results in worse results.
                # Manually adding weights to the loss to do weight decay solves this problem.
                # In original code, there's no weight decay applied in this part 
                # link: https://github.com/PetarV-/DGI/blob/master/execute.py#L121
                # for weight in classifier.trainable_weights:
                #     loss = loss + \
                #         args.weight_decay * tf.nn.l2_loss(weight)
                grads = tape.gradient(loss, classifier.trainable_weights)
                classifier_optimizer.apply_gradients(zip(grads, classifier.trainable_weights))
            if epoch >= 3:
                dur.append(time.time() - t0)

            acc = evaluate(classifier, embeds, labels, val_mask)
            print("Epoch {:05d} | Time(s) {:.4f} | Loss {:.4f} | Accuracy {:.4f} | "
                  "ETputs(KTEPS) {:.2f}".format(epoch, np.mean(dur), loss.numpy().item(),
                                                acc, n_edges / np.mean(dur) / 1000))

        print()
        acc = evaluate(classifier, embeds, labels, test_mask)
        print("Test Accuracy {:.4f}".format(acc))


if __name__ == '__main__':
    parser = argparse.ArgumentParser(description='DGI')
    register_data_args(parser)
    parser.add_argument("--dropout", type=float, default=0.,
                        help="dropout probability")
    parser.add_argument("--gpu", type=int, default=-1,
                        help="gpu")
    parser.add_argument("--dgi-lr", type=float, default=1e-3,
                        help="dgi learning rate")
    parser.add_argument("--classifier-lr", type=float, default=1e-2,
                        help="classifier learning rate")
    parser.add_argument("--n-dgi-epochs", type=int, default=300,
                        help="number of training epochs")
    parser.add_argument("--n-classifier-epochs", type=int, default=300,
                        help="number of training epochs")
    parser.add_argument("--n-hidden", type=int, default=512,
                        help="number of hidden gcn units")
    parser.add_argument("--n-layers", type=int, default=1,
                        help="number of hidden gcn layers")
    parser.add_argument("--weight-decay", type=float, default=0.,
                        help="Weight for L2 loss")
    parser.add_argument("--patience", type=int, default=20,
                        help="early stop patience condition")
    parser.add_argument("--self-loop", action='store_true',
                        help="graph self-loop (default=False)")
    parser.set_defaults(self_loop=False)
    args = parser.parse_args()
    print(args)

    main(args)