run_dist_objects.py 25 KB
Newer Older
1
import os
2
from itertools import product
3

4
import numpy as np
5
6

import dgl
7
import dgl.backend as F
8
9
import json
from dgl.distributed import load_partition_book, node_split, edge_split
10

11
12
13
14
15
16
17
18
19
20
21
22
mode = os.environ.get("DIST_DGL_TEST_MODE", "")
graph_name = os.environ.get("DIST_DGL_TEST_GRAPH_NAME", "random_test_graph")
num_part = int(os.environ.get("DIST_DGL_TEST_NUM_PART"))
num_servers_per_machine = int(os.environ.get("DIST_DGL_TEST_NUM_SERVER"))
num_client_per_machine = int(os.environ.get("DIST_DGL_TEST_NUM_CLIENT"))
shared_workspace = os.environ.get("DIST_DGL_TEST_WORKSPACE")
graph_path = os.environ.get("DIST_DGL_TEST_GRAPH_PATH")
part_id = int(os.environ.get("DIST_DGL_TEST_PART_ID"))
net_type = os.environ.get("DIST_DGL_TEST_NET_TYPE")
ip_config = os.environ.get("DIST_DGL_TEST_IP_CONFIG", "ip_config.txt")

os.environ["DGL_DIST_MODE"] = "distributed"
23

24
25
26
27
28
29
30
def batched_assert_zero(tensor, size):
    BATCH_SIZE=2**16
    curr_pos = 0
    while curr_pos < size:
        end = min(curr_pos + BATCH_SIZE, size)
        assert F.sum(tensor[F.arange(curr_pos, end)], 0) == 0
        curr_pos = end
31
32
33
34

def zeros_init(shape, dtype):
    return F.zeros(shape, dtype=dtype, ctx=F.cpu())

35
36
def rand_init(shape, dtype):
    return F.tensor((np.random.randint(0, 100, size=shape) > 30), dtype=dtype)
37
38
39
40
41
42
43
44
45

def run_server(
    graph_name,
    server_id,
    server_count,
    num_clients,
    shared_mem,
    keep_alive=False,
):
46
    # server_count = num_servers_per_machine
47
48
49
50
51
52
53
54
55
56
57
58
    g = dgl.distributed.DistGraphServer(
        server_id,
        ip_config,
        server_count,
        num_clients,
        graph_path + "/{}.json".format(graph_name),
        disable_shared_mem=not shared_mem,
        graph_format=["csc", "coo"],
        keep_alive=keep_alive,
        net_type=net_type,
    )
    print("start server", server_id)
59
60
    g.start()

61

62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184

##########################################
############### DistGraph ###############
##########################################

def node_split_test(g, force_even, ntype='_N'):
    gpb = g.get_partition_book()

    selected_nodes_dist_tensor = dgl.distributed.DistTensor([g.number_of_nodes(ntype)], F.uint8, init_func=rand_init)

    nodes = node_split(selected_nodes_dist_tensor, gpb, ntype=ntype, force_even=force_even)
    g.barrier()

    selected_nodes_dist_tensor[nodes] = F.astype(F.zeros_like(nodes), selected_nodes_dist_tensor.dtype)
    g.barrier()

    if g.rank() == 0:
        batched_assert_zero(selected_nodes_dist_tensor, g.number_of_nodes(ntype))

    g.barrier()

def edge_split_test(g, force_even, etype='_E'):
    gpb = g.get_partition_book()

    selected_edges_dist_tensor = dgl.distributed.DistTensor([g.number_of_edges(etype)], F.uint8, init_func=rand_init)

    edges = edge_split(selected_edges_dist_tensor, gpb, etype=etype, force_even=force_even)
    g.barrier()

    selected_edges_dist_tensor[edges] = F.astype(F.zeros_like(edges), selected_edges_dist_tensor.dtype)
    g.barrier()

    if g.rank() == 0:
        batched_assert_zero(selected_edges_dist_tensor, g.number_of_edges(etype))

    g.barrier()

def test_dist_graph(g):
    gpb_path = graph_path + '/{}.json'.format(graph_name)
    with open(gpb_path) as conf_f:
        part_metadata = json.load(conf_f)
    assert 'num_nodes' in part_metadata
    assert 'num_edges' in part_metadata
    num_nodes = part_metadata['num_nodes']
    num_edges = part_metadata['num_edges']

    assert g.number_of_nodes() == num_nodes
    assert g.number_of_edges() == num_edges

    num_nodes = {ntype : g.num_nodes(ntype) for ntype in g.ntypes}
    num_edges = {etype : g.num_edges(etype) for etype in g.etypes}

    for key, n_nodes in num_nodes.items():
        assert g.number_of_nodes(key) == n_nodes
        node_split_test(g, force_even=False, ntype=key)
        node_split_test(g, force_even=True,  ntype=key)

    for key, n_edges in num_edges.items():
        assert g.number_of_edges(key) == n_edges
        edge_split_test(g, force_even=False, etype=key)
        edge_split_test(g, force_even=True,  etype=key)

##########################################
########### DistGraphServices ###########
##########################################

def find_edges_test(g, orig_nid_map):
    etypes = g.canonical_etypes

    etype_eids_uv_map = dict()
    for u_type, etype, v_type in etypes:
        orig_u =  g.edges[etype].data['edge_u']
        orig_v =  g.edges[etype].data['edge_v']
        eids = F.tensor(np.random.randint(g.number_of_edges(etype), size=100))
        u, v = g.find_edges(eids, etype=etype)
        assert F.allclose(orig_nid_map[u_type][u], orig_u[eids])
        assert F.allclose(orig_nid_map[v_type][v], orig_v[eids])
        etype_eids_uv_map[etype] = (eids, F.cat([u, v], dim=0))
    return etype_eids_uv_map

def edge_subgraph_test(g, etype_eids_uv_map):
    etypes = g.canonical_etypes
    all_eids = dict()
    for t in etypes:
        all_eids[t] = etype_eids_uv_map[t[1]][0]

    sg = g.edge_subgraph(all_eids)
    for t in etypes:
        assert sg.number_of_edges(t[1]) == len(all_eids[t])
        assert F.allclose(sg.edges[t].data[dgl.EID], all_eids[t])

    for u_type, etype, v_type in etypes:
        uv = etype_eids_uv_map[etype][1]
        sg_u_nids = sg.nodes[u_type].data[dgl.NID]
        sg_v_nids = sg.nodes[v_type].data[dgl.NID]
        sg_uv = F.cat([sg_u_nids, sg_v_nids], dim=0)
        for node_id in uv:
            assert node_id in sg_uv

def sample_neighbors_with_args(g, size, fanout):
    num_nodes = {ntype : g.num_nodes(ntype) for ntype in g.ntypes}
    etypes = g.canonical_etypes

    sampled_graph = g.sample_neighbors({ntype : np.random.randint(0, n, size=size) for ntype, n in num_nodes.items()}, fanout)

    for ntype, n in num_nodes.items():
        assert sampled_graph.number_of_nodes(ntype) == n
    for t in etypes:
        src, dst = sampled_graph.edges(etype=t)
        eids = sampled_graph.edges[t].data[dgl.EID]
        dist_u, dist_v = g.find_edges(eids, etype=t[1])
        assert F.allclose(dist_u, src)
        assert F.allclose(dist_v, dst)

def sample_neighbors_test(g):
    sample_neighbors_with_args(g, size=1024, fanout=3)
    sample_neighbors_with_args(g, size=1, fanout=10)
    sample_neighbors_with_args(g, size=1024, fanout=2)
    sample_neighbors_with_args(g, size=10, fanout=-1)
    sample_neighbors_with_args(g, size=2**10, fanout=1)
    sample_neighbors_with_args(g, size=2**12, fanout=1)

def test_dist_graph_services(g):
185
186
187
188
189
190
191
192
193
194
195
196
197
198
    # in_degrees and out_degrees does not support heterograph
    if len(g.etypes) == 1:
        nids = F.arange(0, 128)

        # Test in_degrees
        orig_in_degrees = g.ndata['in_degrees']
        local_in_degrees = g.in_degrees(nids)
        F.allclose(local_in_degrees, orig_in_degrees[nids])

        # Test out_degrees
        orig_out_degrees = g.ndata['out_degrees']
        local_out_degrees = g.out_degrees(nids)
        F.allclose(local_out_degrees, orig_out_degrees[nids])

199
200
201
202
203
204
205
206
207
208
209
210
    num_nodes = {ntype : g.num_nodes(ntype) for ntype in g.ntypes}

    orig_nid_map = dict()
    dtype =  g.edges[g.etypes[0]].data['edge_u'].dtype
    for ntype, _ in num_nodes.items():
        orig_nid = F.tensor(np.load(graph_path + f'/orig_nid_array_{ntype}.npy'), dtype)
        orig_nid_map[ntype] = orig_nid

    etype_eids_uv_map = find_edges_test(g, orig_nid_map)
    edge_subgraph_test(g, etype_eids_uv_map)
    sample_neighbors_test(g)

211
212
213
214
##########################################
############### DistTensor ###############
##########################################

215

216
217
def dist_tensor_test_sanity(data_shape, name=None):
    local_rank = dgl.distributed.get_rank() % num_client_per_machine
218
219
220
    dist_ten = dgl.distributed.DistTensor(
        data_shape, F.int32, init_func=zeros_init, name=name
    )
221
222
    # arbitrary value
    stride = 3
223
224
    pos = (part_id // 2) * num_client_per_machine + local_rank
    if part_id % 2 == 0:
225
        dist_ten[pos * stride: (pos + 1) * stride] = F.ones(
226
227
            (stride, 2), dtype=F.int32, ctx=F.cpu()
        ) * (pos + 1)
228
229

    dgl.distributed.client_barrier()
230
    assert F.allclose(
231
        dist_ten[pos * stride: (pos + 1) * stride],
232
233
        F.ones((stride, 2), dtype=F.int32, ctx=F.cpu()) * (pos + 1),
    )
234

235
236

def dist_tensor_test_destroy_recreate(data_shape, name):
237
238
239
    dist_ten = dgl.distributed.DistTensor(
        data_shape, F.float32, name, init_func=zeros_init
    )
240
241
242
243
244
    del dist_ten

    dgl.distributed.client_barrier()

    new_shape = (data_shape[0], 4)
245
246
247
248
    dist_ten = dgl.distributed.DistTensor(
        new_shape, F.float32, name, init_func=zeros_init
    )

249
250

def dist_tensor_test_persistent(data_shape):
251
252
253
254
255
256
257
258
    dist_ten_name = "persistent_dist_tensor"
    dist_ten = dgl.distributed.DistTensor(
        data_shape,
        F.float32,
        dist_ten_name,
        init_func=zeros_init,
        persistent=True,
    )
259
260
    del dist_ten
    try:
261
262
263
264
        dist_ten = dgl.distributed.DistTensor(
            data_shape, F.float32, dist_ten_name
        )
        raise Exception("")
265
    except BaseException:
266
267
268
        pass


269
def test_dist_tensor(g):
270
271
    first_type = g.ntypes[0]
    data_shape = (g.number_of_nodes(first_type), 2)
272
273
    dist_tensor_test_sanity(data_shape)
    dist_tensor_test_sanity(data_shape, name="DistTensorSanity")
274
275
276
277
    dist_tensor_test_destroy_recreate(data_shape, name="DistTensorRecreate")
    dist_tensor_test_persistent(data_shape)


278
279
280
281
##########################################
############# DistEmbedding ##############
##########################################

282

283
def dist_embedding_check_sanity(num_nodes, optimizer, name=None):
284
    local_rank = dgl.distributed.get_rank() % num_client_per_machine
285

286
287
288
    emb = dgl.distributed.DistEmbedding(
        num_nodes, 1, name=name, init_func=zeros_init
    )
289
290
291
292
293
294
    lr = 0.001
    optim = optimizer(params=[emb], lr=lr)

    stride = 3

    pos = (part_id // 2) * num_client_per_machine + local_rank
295
    idx = F.arange(pos * stride, (pos + 1) * stride)
296
297
298
299
300
301
302
303
304
305
306
307
308

    if part_id % 2 == 0:
        with F.record_grad():
            value = emb(idx)
            optim.zero_grad()
            loss = F.sum(value + 1, 0)
        loss.backward()
        optim.step()

    dgl.distributed.client_barrier()
    value = emb(idx)
    F.allclose(value, F.ones((len(idx), 1), dtype=F.int32, ctx=F.cpu()) * -lr)

309
310
311
    not_update_idx = F.arange(
        ((num_part + 1) / 2) * num_client_per_machine * stride, num_nodes
    )
312
313
314
315
316
317
    value = emb(not_update_idx)
    assert np.all(F.asnumpy(value) == np.zeros((len(not_update_idx), 1)))


def dist_embedding_check_existing(num_nodes):
    dist_emb_name = "UniqueEmb"
318
319
320
    emb = dgl.distributed.DistEmbedding(
        num_nodes, 1, name=dist_emb_name, init_func=zeros_init
    )
321
    try:
322
323
324
325
        emb1 = dgl.distributed.DistEmbedding(
            num_nodes, 2, name=dist_emb_name, init_func=zeros_init
        )
        raise Exception("")
326
    except BaseException:
327
328
        pass

329

330
331
332
def test_dist_embedding(g):
    num_nodes = g.number_of_nodes(g.ntypes[0])
    dist_embedding_check_sanity(num_nodes, dgl.distributed.optim.SparseAdagrad)
333
334
335
336
337
338
    dist_embedding_check_sanity(
        num_nodes, dgl.distributed.optim.SparseAdagrad, name="SomeEmbedding"
    )
    dist_embedding_check_sanity(
        num_nodes, dgl.distributed.optim.SparseAdam, name="SomeEmbedding"
    )
339
340
341

    dist_embedding_check_existing(num_nodes)

342

343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
##########################################
############# DistOptimizer ##############
##########################################


def dist_optimizer_check_store(g):
    num_nodes = g.number_of_nodes(g.ntypes[0])
    rank = g.rank()
    try:
        emb = dgl.distributed.DistEmbedding(
            num_nodes, 1, name="optimizer_test", init_func=zeros_init
        )
        emb2 = dgl.distributed.DistEmbedding(
            num_nodes, 5, name="optimizer_test2", init_func=zeros_init
        )
        emb_optimizer = dgl.distributed.optim.SparseAdam([emb, emb2], lr=0.1)
        if rank == 0:
            name_to_state = {}
            for _, emb_states in emb_optimizer._state.items():
                for state in emb_states:
                    name_to_state[state.name] = F.uniform(
                        state.shape, F.float32, F.cpu(), 0, 1
                    )
                    state[
                        F.arange(0, num_nodes, F.int64, F.cpu())
                    ] = name_to_state[state.name]
        emb_optimizer.save("emb.pt")
        new_emb_optimizer = dgl.distributed.optim.SparseAdam(
            [emb, emb2], lr=000.1, eps=2e-08, betas=(0.1, 0.222)
        )
        new_emb_optimizer.load("emb.pt")
        if rank == 0:
            for _, emb_states in new_emb_optimizer._state.items():
                for new_state in emb_states:
                    state = name_to_state[new_state.name]
                    new_state = new_state[
                        F.arange(0, num_nodes, F.int64, F.cpu())
                    ]
                    assert F.allclose (state, new_state, 0., 0.)
            assert new_emb_optimizer._lr == emb_optimizer._lr
            assert new_emb_optimizer._eps == emb_optimizer._eps
            assert new_emb_optimizer._beta1 == emb_optimizer._beta1
            assert new_emb_optimizer._beta2 == emb_optimizer._beta2
        g.barrier()
    finally:
        file = f'emb.pt_{rank}'
        if os.path.exists(file):
            os.remove(file)

def test_dist_optimizer(g):
    dist_optimizer_check_store(g)

395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
##########################################
############# DistDataLoader #############
##########################################

class NeighborSampler(object):
    def __init__(self, g, fanouts, sample_neighbors):
        self.g = g
        self.fanouts = fanouts
        self.sample_neighbors = sample_neighbors

    def sample_blocks(self, seeds):
        import torch as th

        seeds = th.LongTensor(np.asarray(seeds))
        blocks = []
        for fanout in self.fanouts:
            # For each seed node, sample ``fanout`` neighbors.
            frontier = self.sample_neighbors(
                self.g, seeds, fanout, replace=True
            )
            # Then we compact the frontier into a bipartite graph for
            # message passing.
            block = dgl.to_block(frontier, seeds)
            # Obtain the seed nodes for next layer.
            seeds = block.srcdata[dgl.NID]
            block.edata["original_eids"] = frontier.edata[dgl.EID]

            blocks.insert(0, block)
        return blocks

def distdataloader_test(g, batch_size, drop_last, shuffle):
    # We sample only a subset to minimize the test runtime
427
    num_nodes_to_sample = int(g.num_nodes() * 0.05)
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
    # To make sure that drop_last is tested
    if num_nodes_to_sample % batch_size == 0:
        num_nodes_to_sample -= 1

    orig_nid_map = dict()
    dtype =  g.edges[g.etypes[0]].data['edge_u'].dtype
    for ntype in g.ntypes:
        orig_nid = F.tensor(np.load(graph_path + f'/orig_nid_array_{ntype}.npy'), dtype)
        orig_nid_map[ntype] = orig_nid

    orig_uv_map = dict()
    for etype in g.etypes:
        orig_uv_map[etype] = (g.edges[etype].data['edge_u'], g.edges[etype].data['edge_v'])

    if len(g.ntypes) == 1:
        train_nid = F.arange(0, num_nodes_to_sample)
    else:
        train_nid = {g.ntypes[0]: F.arange(0, num_nodes_to_sample)}

    sampler = NeighborSampler(
        g,
        [5, 10],
        dgl.distributed.sample_neighbors
    )

    dataloader = dgl.dataloading.DistDataLoader(
        dataset=train_nid.numpy(),
        batch_size=batch_size,
        collate_fn=sampler.sample_blocks,
        shuffle=shuffle,
        drop_last=drop_last,
    )

    for _ in range(2):
        max_nid = []
        for idx, blocks in zip(range(0, num_nodes_to_sample, batch_size), dataloader):
            block = blocks[-1]
            for src_type, etype, dst_type in block.canonical_etypes:
                orig_u, orig_v = orig_uv_map[etype]
                o_src, o_dst = block.edges(etype=etype)
                src_nodes_id = block.srcnodes[src_type].data[dgl.NID][o_src]
                dst_nodes_id = block.dstnodes[dst_type].data[dgl.NID][o_dst]
                max_nid.append(np.max(F.asnumpy(dst_nodes_id)))

                src_nodes_id = orig_nid_map[src_type][src_nodes_id]
                dst_nodes_id = orig_nid_map[dst_type][dst_nodes_id]
                eids = block.edata["original_eids"]
                F.allclose(src_nodes_id, orig_u[eids])
                F.allclose(dst_nodes_id, orig_v[eids])
        if not shuffle and len(max_nid) > 0:
            if drop_last:
                assert (
                    np.max(max_nid)
                    == num_nodes_to_sample
                    - 1
                    - num_nodes_to_sample % batch_size
                )
            else:
                assert np.max(max_nid) == num_nodes_to_sample - 1
    del dataloader

def distnodedataloader_test(g, batch_size, drop_last, shuffle,
                            num_workers, orig_nid_map, orig_uv_map):
    # We sample only a subset to minimize the test runtime
492
    num_nodes_to_sample = int(g.num_nodes(g.ntypes[-1]) * 0.05)
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
    # To make sure that drop_last is tested
    if num_nodes_to_sample % batch_size == 0:
        num_nodes_to_sample -= 1

    if len(g.ntypes) == 1:
        train_nid = F.arange(0, num_nodes_to_sample)
    else:
        train_nid = {g.ntypes[-1]: F.arange(0, num_nodes_to_sample)}

    if len(g.etypes) > 1:
        sampler = dgl.dataloading.MultiLayerNeighborSampler(
            [
                {etype: 5 for etype in g.etypes},
                10,
            ]
        )
    else:
        sampler = dgl.dataloading.MultiLayerNeighborSampler(
            [
                5,
                10,
            ]
        )

    dataloader = dgl.dataloading.DistNodeDataLoader(
        g,
        train_nid,
        sampler,
        batch_size=batch_size,
        shuffle=shuffle,
        drop_last=drop_last,
        num_workers=num_workers,
    )

    for _ in range(2):
        for _, (_, _, blocks) in zip(range(0, num_nodes_to_sample, batch_size), dataloader):
            block = blocks[-1]
            for src_type, etype, dst_type in block.canonical_etypes:
                orig_u, orig_v = orig_uv_map[etype]
                o_src, o_dst = block.edges(etype=etype)
                src_nodes_id = block.srcnodes[src_type].data[dgl.NID][o_src]
                dst_nodes_id = block.dstnodes[dst_type].data[dgl.NID][o_dst]
                src_nodes_id = orig_nid_map[src_type][src_nodes_id]
                dst_nodes_id = orig_nid_map[dst_type][dst_nodes_id]
                eids = block.edges[etype].data[dgl.EID]
                F.allclose(src_nodes_id, orig_u[eids])
                F.allclose(dst_nodes_id, orig_v[eids])
    del dataloader


def distedgedataloader_test(g, batch_size, drop_last, shuffle,
                            num_workers, orig_nid_map, orig_uv_map, num_negs):
    # We sample only a subset to minimize the test runtime
546
    num_edges_to_sample = int(g.num_edges(g.etypes[-1]) * 0.05)
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
    # To make sure that drop_last is tested
    if num_edges_to_sample % batch_size == 0:
        num_edges_to_sample -= 1

    if len(g.etypes) == 1:
        train_eid = F.arange(0, num_edges_to_sample)
    else:
        train_eid = {g.etypes[-1]: F.arange(0, num_edges_to_sample)}

    sampler = dgl.dataloading.MultiLayerNeighborSampler([5, 10])

    dataloader = dgl.dataloading.DistEdgeDataLoader(
         g,
         train_eid,
         sampler,
         batch_size=batch_size,
         negative_sampler=dgl.dataloading.negative_sampler.Uniform(num_negs) if num_negs > 0 else None,
         shuffle=shuffle,
         drop_last=drop_last,
         num_workers=num_workers,
    )
    for _ in range(2):
        for _, sampled_data in zip(
            range(0, num_edges_to_sample, batch_size), dataloader
        ):
            blocks = sampled_data[3 if num_negs > 0 else 2]
            block = blocks[-1]
            for src_type, etype, dst_type in block.canonical_etypes:
                orig_u, orig_v = orig_uv_map[etype]
                o_src, o_dst = block.edges(etype=etype)
                src_nodes_id = block.srcnodes[src_type].data[dgl.NID][o_src]
                dst_nodes_id = block.dstnodes[dst_type].data[dgl.NID][o_dst]
                src_nodes_id = orig_nid_map[src_type][src_nodes_id]
                dst_nodes_id = orig_nid_map[dst_type][dst_nodes_id]
                eids = block.edges[etype].data[dgl.EID]
                F.allclose(src_nodes_id, orig_u[eids])
                F.allclose(dst_nodes_id, orig_v[eids])
                if num_negs == 0:
                    pos_pair_graph = sampled_data[1]
                    assert np.all(
                        F.asnumpy(block.dstnodes[dst_type].data[dgl.NID])
                        == F.asnumpy(pos_pair_graph.nodes[dst_type].data[dgl.NID])
                    )
                else:
                    pos_graph, neg_graph = sampled_data[1:3]
                    assert np.all(
                        F.asnumpy(block.dstnodes[dst_type].data[dgl.NID])
                        == F.asnumpy(pos_graph.nodes[dst_type].data[dgl.NID])
                    )
                    assert np.all(
                        F.asnumpy(block.dstnodes[dst_type].data[dgl.NID])
                        == F.asnumpy(neg_graph.nodes[dst_type].data[dgl.NID])
                    )
                    assert pos_graph.num_edges() * num_negs == neg_graph.num_edges()
    del dataloader

def multi_distdataloader_test(g, dataloader_class):
    total_num_items =  g.num_nodes(g.ntypes[-1]) if "Node" in dataloader_class.__name__ else g.num_edges(g.etypes[-1])

    num_dataloaders=4
    batch_size=32
    sampler = dgl.dataloading.NeighborSampler([-1])
    dataloaders = []
    dl_iters = []

612
613
614
615
616
617
    # We sample only a subset to minimize the test runtime
    num_items_to_sample = int(total_num_items * 0.05)
    # To make sure that drop_last is tested
    if num_items_to_sample % batch_size == 0:
        num_items_to_sample -= 1

618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
    if len(g.ntypes) == 1:
        train_ids = F.arange(0, num_items_to_sample)
    else:
        train_ids = {g.ntypes[-1] if "Node" in dataloader_class.__name__ else g.etypes[-1] : F.arange(0, num_items_to_sample)}

    for _ in range(num_dataloaders):
        dataloader = dataloader_class(
            g, train_ids, sampler, batch_size=batch_size
        )
        dataloaders.append(dataloader)
        dl_iters.append(iter(dataloader))

    # iterate on multiple dataloaders randomly
    while len(dl_iters) > 0:
        current_dl = np.random.choice(len(dl_iters), 1)[0]
        try:
            _ = next(dl_iters[current_dl])
        except StopIteration:
            dl_iters.pop(current_dl)
            del dataloaders[current_dl]

def test_dist_dataloader(g):
    orig_nid_map = dict()
    dtype =  g.edges[g.etypes[0]].data['edge_u'].dtype
    for ntype in g.ntypes:
        orig_nid = F.tensor(np.load(graph_path + f'/orig_nid_array_{ntype}.npy'), dtype)
        orig_nid_map[ntype] = orig_nid

    orig_uv_map = dict()
    for etype in g.etypes:
        orig_uv_map[etype] = (g.edges[etype].data['edge_u'], g.edges[etype].data['edge_v'])

    batch_size_l = [64]
    drop_last_l = [False, True]
    num_workers_l = [0, 4]
    shuffle_l = [False, True]

    for batch_size, drop_last, shuffle, num_workers \
    in product(batch_size_l, drop_last_l, shuffle_l, num_workers_l):
        if len(g.ntypes) == 1 and num_workers == 0:
            distdataloader_test(g, batch_size, drop_last, shuffle)
        distnodedataloader_test(g, batch_size, drop_last, shuffle, num_workers, orig_nid_map, orig_uv_map)
        # No negssampling
        distedgedataloader_test(g, batch_size, drop_last, shuffle, num_workers, orig_nid_map, orig_uv_map, num_negs=0)
        # negsampling 15
        distedgedataloader_test(g, batch_size, drop_last, shuffle, num_workers, orig_nid_map, orig_uv_map, num_negs=15)

    multi_distdataloader_test(g, dgl.dataloading.DistNodeDataLoader)
    multi_distdataloader_test(g, dgl.dataloading.DistEdgeDataLoader)

668

669
if mode == "server":
670
671
672
673
674
675
676
677
678
679
    shared_mem = bool(int(os.environ.get("DIST_DGL_TEST_SHARED_MEM")))
    server_id = int(os.environ.get("DIST_DGL_TEST_SERVER_ID"))
    run_server(
        graph_name,
        server_id,
        server_count=num_servers_per_machine,
        num_clients=num_part * num_client_per_machine,
        shared_mem=shared_mem,
        keep_alive=False,
    )
680
elif mode == "client":
681
    os.environ["DGL_NUM_SERVER"] = str(num_servers_per_machine)
682
683
    dgl.distributed.initialize(ip_config, net_type=net_type)

684
    gpb, graph_name, _, _ = load_partition_book(
685
        graph_path + "/{}.json".format(graph_name), part_id
686
    )
687
    g = dgl.distributed.DistGraph(graph_name, gpb=gpb)
688

689
    target_func_map = {
690
691
        "DistGraph": test_dist_graph,
        "DistGraphServices": test_dist_graph_services,
692
693
        "DistTensor": test_dist_tensor,
        "DistEmbedding": test_dist_embedding,
694
        "DistOptimizer": test_dist_optimizer,
695
        "DistDataLoader": test_dist_dataloader,
696
    }
697

698
699
700
701
702
703
704
705
706
    targets = os.environ.get("DIST_DGL_TEST_OBJECT_TYPE", "")
    targets = targets.replace(' ', '').split(',') if targets else []
    blacklist = os.environ.get("DIST_DGL_TEST_OBJECT_TYPE_BLACKLIST", "")
    blacklist = blacklist.replace(' ', '').split(',') if blacklist else []

    for to_bl in blacklist:
        target_func_map.pop(to_bl, None)

    if not targets:
707
708
        for test_func in target_func_map.values():
            test_func(g)
709
    else:
710
711
712
713
714
        for target in targets:
            if target in target_func_map:
                target_func_map[target](g)
            else:
                print(f"Tests not implemented for target '{target}'")
715

716
717
else:
    exit(1)