test_new_kvstore.py 10.9 KB
Newer Older
1
2
3
import os
import time
import numpy as np
4
import socket
5
6
7
8
9
from scipy import sparse as spsp
import dgl
import backend as F
import unittest, pytest
from dgl.graph_index import create_graph_index
10
import multiprocessing as mp
11
12
from numpy.testing import assert_array_equal

13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
if os.name != 'nt':
    import fcntl
    import struct

def get_local_usable_addr():
    """Get local usable IP and port

    Returns
    -------
    str
        IP address, e.g., '192.168.8.12:50051'
    """
    sock = socket.socket(socket.AF_INET, socket.SOCK_DGRAM)
    try:
        # doesn't even have to be reachable
        sock.connect(('10.255.255.255', 1))
        ip_addr = sock.getsockname()[0]
    except ValueError:
        ip_addr = '127.0.0.1'
    finally:
        sock.close()
    sock = socket.socket(socket.AF_INET, socket.SOCK_STREAM)
    sock.bind(("", 0))
    sock.listen(1)
    port = sock.getsockname()[1]
    sock.close()

    return ip_addr + ' ' + str(port)

42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
def create_random_graph(n):
    arr = (spsp.random(n, n, density=0.001, format='coo') != 0).astype(np.int64)
    ig = create_graph_index(arr, readonly=True)
    return dgl.DGLGraph(ig)

# Create an one-part Graph
node_map = F.tensor([0,0,0,0,0,0], F.int64)
edge_map = F.tensor([0,0,0,0,0,0,0], F.int64)
global_nid = F.tensor([0,1,2,3,4,5], F.int64)
global_eid = F.tensor([0,1,2,3,4,5,6], F.int64)

g = dgl.DGLGraph()
g.add_nodes(6)
g.add_edge(0, 1) # 0
g.add_edge(0, 2) # 1
g.add_edge(0, 3) # 2
g.add_edge(2, 3) # 3
g.add_edge(1, 1) # 4
g.add_edge(0, 4) # 5
g.add_edge(2, 5) # 6

g.ndata[dgl.NID] = global_nid
g.edata[dgl.EID] = global_eid

gpb = dgl.distributed.GraphPartitionBook(part_id=0,
                                         num_parts=1,
                                         node_map=node_map,
                                         edge_map=edge_map,
                                         part_graph=g)

node_policy = dgl.distributed.PartitionPolicy(policy_str='node',
                                              part_id=0,
                                              partition_book=gpb)

edge_policy = dgl.distributed.PartitionPolicy(policy_str='edge',
                                              part_id=0,
                                              partition_book=gpb)

data_0 = F.tensor([[1.,1.],[1.,1.],[1.,1.],[1.,1.],[1.,1.],[1.,1.]], F.float32)
81
82
83
data_0_1 = F.tensor([1.,2.,3.,4.,5.,6.], F.float32)
data_0_2 = F.tensor([1,2,3,4,5,6], F.int32)
data_0_3 = F.tensor([1,2,3,4,5,6], F.int64)
84
85
86
87
88
89
90
data_1 = F.tensor([[2.,2.],[2.,2.],[2.,2.],[2.,2.],[2.,2.],[2.,2.],[2.,2.]], F.float32)
data_2 = F.tensor([[0.,0.],[0.,0.],[0.,0.],[0.,0.],[0.,0.],[0.,0.]], F.float32)

def init_zero_func(shape, dtype):
    return F.zeros(shape, dtype, F.cpu())

def udf_push(target, name, id_tensor, data_tensor):
91
92
93
94
    target[name][id_tensor] = data_tensor * data_tensor

def add_push(target, name, id_tensor, data_tensor):
    target[name][id_tensor] += data_tensor
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112

@unittest.skipIf(os.name == 'nt' or os.getenv('DGLBACKEND') == 'tensorflow', reason='Do not support windows and TF yet')
def test_partition_policy():
    assert node_policy.policy_str == 'node'
    assert edge_policy.policy_str == 'edge'
    assert node_policy.part_id == 0
    assert edge_policy.part_id == 0
    local_nid = node_policy.to_local(F.tensor([0,1,2,3,4,5]))
    local_eid = edge_policy.to_local(F.tensor([0,1,2,3,4,5,6]))
    assert_array_equal(F.asnumpy(local_nid), F.asnumpy(F.tensor([0,1,2,3,4,5], F.int64)))
    assert_array_equal(F.asnumpy(local_eid), F.asnumpy(F.tensor([0,1,2,3,4,5,6], F.int64)))
    nid_partid = node_policy.to_partid(F.tensor([0,1,2,3,4,5], F.int64))
    eid_partid = edge_policy.to_partid(F.tensor([0,1,2,3,4,5,6], F.int64))
    assert_array_equal(F.asnumpy(nid_partid), F.asnumpy(F.tensor([0,0,0,0,0,0], F.int64)))
    assert_array_equal(F.asnumpy(eid_partid), F.asnumpy(F.tensor([0,0,0,0,0,0,0], F.int64)))
    assert node_policy.get_data_size() == len(node_map)
    assert edge_policy.get_data_size() == len(edge_map)

113
def start_server(server_id, num_clients):
114
	# Init kvserver
115
    kvserver = dgl.distributed.KVServer(server_id=server_id,
116
                                        ip_config='kv_ip_config.txt',
117
                                        num_clients=num_clients)
118
119
    kvserver.add_part_policy(node_policy)
    kvserver.add_part_policy(edge_policy)
120
121
122
123
124
125
126
127
128
129
    if kvserver.is_backup_server():
        kvserver.init_data('data_0', 'node')
        kvserver.init_data('data_0_1', 'node')
        kvserver.init_data('data_0_2', 'node')
        kvserver.init_data('data_0_3', 'node')
    else:
        kvserver.init_data('data_0', 'node', data_0)
        kvserver.init_data('data_0_1', 'node', data_0_1)
        kvserver.init_data('data_0_2', 'node', data_0_2)
        kvserver.init_data('data_0_3', 'node', data_0_3)
130
    # start server
Jinjing Zhou's avatar
Jinjing Zhou committed
131
    server_state = dgl.distributed.ServerState(kv_store=kvserver, local_g=None, partition_book=None)
132
    dgl.distributed.start_server(server_id=server_id,
133
                                 ip_config='kv_ip_config.txt',
134
                                 num_clients=num_clients,
135
136
                                 server_state=server_state)

137
def start_client(num_clients):
138
139
140
141
    # Note: connect to server first !
    dgl.distributed.connect_to_server(ip_config='kv_ip_config.txt')
    # Init kvclient
    kvclient = dgl.distributed.KVClient(ip_config='kv_ip_config.txt')
142
    assert dgl.distributed.get_num_client() == num_clients
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
    kvclient.init_data(name='data_1', 
                       shape=F.shape(data_1), 
                       dtype=F.dtype(data_1), 
                       policy_str='edge', 
                       partition_book=gpb, 
                       init_func=init_zero_func)
    kvclient.init_data(name='data_2', 
                       shape=F.shape(data_2), 
                       dtype=F.dtype(data_2), 
                       policy_str='node', 
                       partition_book=gpb, 
                       init_func=init_zero_func)

    kvclient.map_shared_data(partition_book=gpb)
    
    # Test data_name_list
    name_list = kvclient.data_name_list()
    print(name_list)
    assert 'data_0' in name_list
162
163
164
    assert 'data_0_1' in name_list
    assert 'data_0_2' in name_list
    assert 'data_0_3' in name_list
165
166
167
168
169
170
171
172
    assert 'data_1' in name_list
    assert 'data_2' in name_list
    # Test get_meta_data
    meta = kvclient.get_data_meta('data_0')
    dtype, shape, policy = meta
    assert dtype == F.dtype(data_0)
    assert shape == F.shape(data_0)
    assert policy.policy_str == 'node'
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191

    meta = kvclient.get_data_meta('data_0_1')
    dtype, shape, policy = meta
    assert dtype == F.dtype(data_0_1)
    assert shape == F.shape(data_0_1)
    assert policy.policy_str == 'node'

    meta = kvclient.get_data_meta('data_0_2')
    dtype, shape, policy = meta
    assert dtype == F.dtype(data_0_2)
    assert shape == F.shape(data_0_2)
    assert policy.policy_str == 'node'

    meta = kvclient.get_data_meta('data_0_3')
    dtype, shape, policy = meta
    assert dtype == F.dtype(data_0_3)
    assert shape == F.shape(data_0_3)
    assert policy.policy_str == 'node'

192
193
194
195
196
    meta = kvclient.get_data_meta('data_1')
    dtype, shape, policy = meta
    assert dtype == F.dtype(data_1)
    assert shape == F.shape(data_1)
    assert policy.policy_str == 'edge'
197

198
199
200
201
202
    meta = kvclient.get_data_meta('data_2')
    dtype, shape, policy = meta
    assert dtype == F.dtype(data_2)
    assert shape == F.shape(data_2)
    assert policy.policy_str == 'node'
203

204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
    # Test push and pull
    id_tensor = F.tensor([0,2,4], F.int64)
    data_tensor = F.tensor([[6.,6.],[6.,6.],[6.,6.]], F.float32)
    kvclient.push(name='data_0',
                  id_tensor=id_tensor,
                  data_tensor=data_tensor)
    kvclient.push(name='data_1',
                  id_tensor=id_tensor,
                  data_tensor=data_tensor)
    kvclient.push(name='data_2',
                  id_tensor=id_tensor,
                  data_tensor=data_tensor)
    res = kvclient.pull(name='data_0', id_tensor=id_tensor)
    assert_array_equal(F.asnumpy(res), F.asnumpy(data_tensor))
    res = kvclient.pull(name='data_1', id_tensor=id_tensor)
    assert_array_equal(F.asnumpy(res), F.asnumpy(data_tensor))
    res = kvclient.pull(name='data_2', id_tensor=id_tensor)
    assert_array_equal(F.asnumpy(res), F.asnumpy(data_tensor))
    # Register new push handler
223
224
225
    kvclient.register_push_handler('data_0', udf_push)
    kvclient.register_push_handler('data_1', udf_push)
    kvclient.register_push_handler('data_2', udf_push)
226
227
228
229
230
231
232
233
234
235
    # Test push and pull
    kvclient.push(name='data_0',
                  id_tensor=id_tensor,
                  data_tensor=data_tensor)
    kvclient.push(name='data_1',
                  id_tensor=id_tensor,
                  data_tensor=data_tensor)
    kvclient.push(name='data_2',
                  id_tensor=id_tensor,
                  data_tensor=data_tensor)
236
    kvclient.barrier()
237
238
239
240
241
242
243
    data_tensor = data_tensor * data_tensor
    res = kvclient.pull(name='data_0', id_tensor=id_tensor)
    assert_array_equal(F.asnumpy(res), F.asnumpy(data_tensor))
    res = kvclient.pull(name='data_1', id_tensor=id_tensor)
    assert_array_equal(F.asnumpy(res), F.asnumpy(data_tensor))
    res = kvclient.pull(name='data_2', id_tensor=id_tensor)
    assert_array_equal(F.asnumpy(res), F.asnumpy(data_tensor))
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
    # Register new push handler
    kvclient.init_data(name='data_3', 
                       shape=F.shape(data_2),
                       dtype=F.dtype(data_2), 
                       policy_str='node',
                       partition_book=gpb,
                       init_func=init_zero_func)
    kvclient.register_push_handler('data_3', add_push)
    kvclient.map_shared_data(partition_book=gpb)
    data_tensor = F.tensor([[6.,6.],[6.,6.],[6.,6.]], F.float32)
    time.sleep(kvclient.client_id + 1)
    print("add...")
    kvclient.push(name='data_3',
                  id_tensor=id_tensor,
                  data_tensor=data_tensor)
    kvclient.barrier()
    res = kvclient.pull(name='data_3', id_tensor=id_tensor)
    data_tensor = data_tensor * num_clients
    assert_array_equal(F.asnumpy(res), F.asnumpy(data_tensor))
263
    # clean up
264
    kvclient.barrier()
265
266
267
268
269
    dgl.distributed.shutdown_servers()
    dgl.distributed.finalize_client()

@unittest.skipIf(os.name == 'nt' or os.getenv('DGLBACKEND') == 'tensorflow', reason='Do not support windows and TF yet')
def test_kv_store():
270
    # start 10 server and 10 client
271
    ip_config = open("kv_ip_config.txt", "w")
272
    ip_addr = get_local_usable_addr()
273
    ip_config.write('%s 10\n' % ip_addr)
274
    ip_config.close()
275
    ctx = mp.get_context('spawn')
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
    pserver_list = []
    pclient_list = []
    for i in range(10):
        pserver = ctx.Process(target=start_server, args=(i, 10))
        pserver.start()
        pserver_list.append(pserver)
    time.sleep(2)
    for i in range(10):
        pclient = ctx.Process(target=start_client, args=(10,))
        pclient.start()
        pclient_list.append(pclient)
    for i in range(10):
        pclient_list[i].join()
    for i in range(10):
        pserver_list[i].join()
291
292
293

if __name__ == '__main__':
    test_partition_policy()
294
    test_kv_store()