test_basics.py 19.8 KB
Newer Older
1
2
3
4
5
# Currently readonly graph construction only accepts sparse tensor in MXNet,
# and pytorch doesn't support readonly graph or graph creation from sparse
# tensor.  For now, readonly graph test is postponed until we have better
# readonly graph support.
import backend as F
6
import dgl
7
import networkx as nx
8
from dgl import DGLGraph
9
from collections import defaultdict as ddict
10
11
12
13

D = 5
reduce_msg_shapes = set()

14
def message_func(edges):
15
16
    assert F.ndim(edges.src['h']) == 2
    assert F.shape(edges.src['h'])[1] == D
17
    return {'m' : edges.src['h']}
18

19
20
def reduce_func(nodes):
    msgs = nodes.mailbox['m']
Minjie Wang's avatar
Minjie Wang committed
21
    reduce_msg_shapes.add(tuple(msgs.shape))
22
23
24
    assert F.ndim(msgs) == 3
    assert F.shape(msgs)[2] == D
    return {'accum' : F.sum(msgs, 1)}
Minjie Wang's avatar
Minjie Wang committed
25

26
27
def apply_node_func(nodes):
    return {'h' : nodes.data['h'] + nodes.data['accum']}
Minjie Wang's avatar
Minjie Wang committed
28

29
def generate_graph(grad=False):
30
    g = DGLGraph()
31
    g.add_nodes(10) # 10 nodes
32
    # create a graph where 0 is the source and 9 is the sink
Minjie Wang's avatar
Minjie Wang committed
33
    # 17 edges
34
35
36
37
38
    for i in range(1, 9):
        g.add_edge(0, i)
        g.add_edge(i, 9)
    # add a back flow from 9 to 0
    g.add_edge(9, 0)
39
40
41
42
43
44
    ncol = F.randn((10, D))
    ecol = F.randn((17, D))
    if grad:
        ncol = F.attach_grad(ncol)
        ecol = F.attach_grad(ecol)

45
46
    g.ndata['h'] = ncol
    g.edata['w'] = ecol
47
48
    g.set_n_initializer(dgl.init.zero_initializer)
    g.set_e_initializer(dgl.init.zero_initializer)
49
50
51
52
    return g

def test_batch_setter_getter():
    def _pfc(x):
53
        return list(F.zerocopy_to_numpy(x)[:,0])
54
55
    g = generate_graph()
    # set all nodes
56
57
    g.ndata['h'] = F.zeros((10, D))
    assert F.allclose(g.ndata['h'], F.zeros((10, D)))
Minjie Wang's avatar
Minjie Wang committed
58
    # pop nodes
59
    old_len = len(g.ndata)
Minjie Wang's avatar
Minjie Wang committed
60
    assert _pfc(g.pop_n_repr('h')) == [0.] * 10
61
    assert len(g.ndata) == old_len - 1
62
    g.ndata['h'] = F.zeros((10, D))
63
    # set partial nodes
64
65
    u = F.tensor([1, 3, 5])
    g.nodes[u].data['h'] = F.ones((3, D))
66
    assert _pfc(g.ndata['h']) == [0., 1., 0., 1., 0., 1., 0., 0., 0., 0.]
67
    # get partial nodes
68
    u = F.tensor([1, 2, 3])
69
    assert _pfc(g.nodes[u].data['h']) == [1., 0., 1.]
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91

    '''
    s, d, eid
    0, 1, 0
    1, 9, 1
    0, 2, 2
    2, 9, 3
    0, 3, 4
    3, 9, 5
    0, 4, 6
    4, 9, 7
    0, 5, 8
    5, 9, 9
    0, 6, 10
    6, 9, 11
    0, 7, 12
    7, 9, 13
    0, 8, 14
    8, 9, 15
    9, 0, 16
    '''
    # set all edges
92
    g.edata['l'] = F.zeros((17, D))
93
    assert _pfc(g.edata['l']) == [0.] * 17
Minjie Wang's avatar
Minjie Wang committed
94
    # pop edges
95
    old_len = len(g.edata)
Minjie Wang's avatar
Minjie Wang committed
96
    assert _pfc(g.pop_e_repr('l')) == [0.] * 17
97
    assert len(g.edata) == old_len - 1
98
    g.edata['l'] = F.zeros((17, D))
Minjie Wang's avatar
Minjie Wang committed
99
    # set partial edges (many-many)
100
101
102
    u = F.tensor([0, 0, 2, 5, 9])
    v = F.tensor([1, 3, 9, 9, 0])
    g.edges[u, v].data['l'] = F.ones((5, D))
Minjie Wang's avatar
Minjie Wang committed
103
104
    truth = [0.] * 17
    truth[0] = truth[4] = truth[3] = truth[9] = truth[16] = 1.
105
    assert _pfc(g.edata['l']) == truth
Minjie Wang's avatar
Minjie Wang committed
106
    # set partial edges (many-one)
107
108
109
    u = F.tensor([3, 4, 6])
    v = F.tensor([9])
    g.edges[u, v].data['l'] = F.ones((3, D))
Minjie Wang's avatar
Minjie Wang committed
110
    truth[5] = truth[7] = truth[11] = 1.
111
    assert _pfc(g.edata['l']) == truth
Minjie Wang's avatar
Minjie Wang committed
112
    # set partial edges (one-many)
113
114
115
    u = F.tensor([0])
    v = F.tensor([4, 5, 6])
    g.edges[u, v].data['l'] = F.ones((3, D))
Minjie Wang's avatar
Minjie Wang committed
116
    truth[6] = truth[8] = truth[10] = 1.
117
    assert _pfc(g.edata['l']) == truth
Minjie Wang's avatar
Minjie Wang committed
118
    # get partial edges (many-many)
119
120
    u = F.tensor([0, 6, 0])
    v = F.tensor([6, 9, 7])
121
    assert _pfc(g.edges[u, v].data['l']) == [1., 1., 0.]
Minjie Wang's avatar
Minjie Wang committed
122
    # get partial edges (many-one)
123
124
    u = F.tensor([5, 6, 7])
    v = F.tensor([9])
125
    assert _pfc(g.edges[u, v].data['l']) == [1., 1., 0.]
Minjie Wang's avatar
Minjie Wang committed
126
    # get partial edges (one-many)
127
128
    u = F.tensor([0])
    v = F.tensor([3, 4, 5])
129
    assert _pfc(g.edges[u, v].data['l']) == [1., 1., 1.]
130

131
132
def test_batch_setter_autograd():
    g = generate_graph(grad=True)
133
    h1 = g.ndata['h']
134
    # partial set
135
136
137
138
139
140
141
142
    v = F.tensor([1, 2, 8])
    hh = F.attach_grad(F.zeros((len(v), D)))
    with F.record_grad():
        g.nodes[v].data['h'] = hh
        h2 = g.ndata['h']
    F.backward(h2, F.ones((10, D)) * 2)
    assert F.array_equal(F.grad(h1)[:,0], F.tensor([2., 0., 0., 2., 2., 2., 2., 2., 0., 2.]))
    assert F.array_equal(F.grad(hh)[:,0], F.tensor([2., 2., 2.]))
143

144
145
146
147
def test_nx_conversion():
    # check conversion between networkx and DGLGraph

    def _check_nx_feature(nxg, nf, ef):
Minjie Wang's avatar
Minjie Wang committed
148
149
        # check node and edge feature of nxg
        # this is used to check to_networkx
150
151
152
153
154
155
156
        num_nodes = len(nxg)
        num_edges = nxg.size()
        if num_nodes > 0:
            node_feat = ddict(list)
            for nid, attr in nxg.nodes(data=True):
                assert len(attr) == len(nf)
                for k in nxg.nodes[nid]:
157
                    node_feat[k].append(F.unsqueeze(attr[k], 0))
158
            for k in node_feat:
159
160
                feat = F.cat(node_feat[k], 0)
                assert F.allclose(feat, nf[k])
161
162
163
164
165
166
167
168
        else:
            assert len(nf) == 0
        if num_edges > 0:
            edge_feat = ddict(lambda: [0] * num_edges)
            for u, v, attr in nxg.edges(data=True):
                assert len(attr) == len(ef) + 1 # extra id
                eid = attr['id']
                for k in ef:
169
                    edge_feat[k][eid] = F.unsqueeze(attr[k], 0)
170
            for k in edge_feat:
171
172
                feat = F.cat(edge_feat[k], 0)
                assert F.allclose(feat, ef[k])
173
174
175
        else:
            assert len(ef) == 0

176
177
178
179
180
    n1 = F.randn((5, 3))
    n2 = F.randn((5, 10))
    n3 = F.randn((5, 4))
    e1 = F.randn((4, 5))
    e2 = F.randn((4, 7))
181
182
183
184
185
186
187
188
189
190
191
192
    g = DGLGraph(multigraph=True)
    g.add_nodes(5)
    g.add_edges([0,1,3,4], [2,4,0,3])
    g.ndata.update({'n1': n1, 'n2': n2, 'n3': n3})
    g.edata.update({'e1': e1, 'e2': e2})

    # convert to networkx
    nxg = g.to_networkx(node_attrs=['n1', 'n3'], edge_attrs=['e1', 'e2'])
    assert len(nxg) == 5
    assert nxg.size() == 4
    _check_nx_feature(nxg, {'n1': n1, 'n3': n3}, {'e1': e1, 'e2': e2})

Minjie Wang's avatar
Minjie Wang committed
193
    # convert to DGLGraph, nx graph has id in edge feature
194
195
    # use id feature to test non-tensor copy
    g.from_networkx(nxg, node_attrs=['n1'], edge_attrs=['e1', 'id'])
Minjie Wang's avatar
Minjie Wang committed
196
    # check graph size
197
198
    assert g.number_of_nodes() == 5
    assert g.number_of_edges() == 4
Minjie Wang's avatar
Minjie Wang committed
199
200
201
202
203
    # check number of features
    # test with existing dglgraph (so existing features should be cleared)
    assert len(g.ndata) == 1
    assert len(g.edata) == 2
    # check feature values
204
    assert F.allclose(g.ndata['n1'], n1)
Minjie Wang's avatar
Minjie Wang committed
205
    # with id in nx edge feature, e1 should follow original order
206
207
    assert F.allclose(g.edata['e1'], e1)
    assert F.array_equal(g.get_e_repr()['id'], F.arange(0, 4))
208

Minjie Wang's avatar
Minjie Wang committed
209
210
    # test conversion after modifying DGLGraph
    g.pop_e_repr('id') # pop id so we don't need to provide id when adding edges
211
212
    new_n = F.randn((2, 3))
    new_e = F.randn((3, 5))
213
214
215
    g.add_nodes(2, data={'n1': new_n})
    # add three edges, one is a multi-edge
    g.add_edges([3, 6, 0], [4, 5, 2], data={'e1': new_e})
216
217
    n1 = F.cat((n1, new_n), 0)
    e1 = F.cat((e1, new_e), 0)
218
219
220
221
222
223
    # convert to networkx again
    nxg = g.to_networkx(node_attrs=['n1'], edge_attrs=['e1'])
    assert len(nxg) == 7
    assert nxg.size() == 7
    _check_nx_feature(nxg, {'n1': n1}, {'e1': e1})

Minjie Wang's avatar
Minjie Wang committed
224
225
226
227
228
229
230
231
232
233
234
235
236
237
    # now test convert from networkx without id in edge feature
    # first pop id in edge feature
    for _, _, attr in nxg.edges(data=True):
        attr.pop('id')
    # test with a new graph
    g = DGLGraph(multigraph=True)
    g.from_networkx(nxg, node_attrs=['n1'], edge_attrs=['e1'])
    # check graph size
    assert g.number_of_nodes() == 7
    assert g.number_of_edges() == 7
    # check number of features
    assert len(g.ndata) == 1
    assert len(g.edata) == 1
    # check feature values
238
    assert F.allclose(g.ndata['n1'], n1)
Minjie Wang's avatar
Minjie Wang committed
239
240
241
    # edge feature order follows nxg.edges()
    edge_feat = []
    for _, _, attr in nxg.edges(data=True):
242
243
244
        edge_feat.append(F.unsqueeze(attr['e1'], 0))
    edge_feat = F.cat(edge_feat, 0)
    assert F.allclose(g.edata['e1'], edge_feat)
Minjie Wang's avatar
Minjie Wang committed
245

246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
    # Test converting from a networkx graph whose nodes are
    # not labeled with consecutive-integers.
    nxg = nx.cycle_graph(5)
    nxg.remove_nodes_from([0, 4])
    for u in nxg.nodes():
        nxg.node[u]['h'] = F.tensor([u])
    for u, v, d in nxg.edges(data=True):
        d['h'] = F.tensor([u, v])

    g = dgl.DGLGraph()
    g.from_networkx(nxg, node_attrs=['h'], edge_attrs=['h'])
    assert g.number_of_nodes() == 3
    assert g.number_of_edges() == 4
    assert g.has_edge_between(0, 1)
    assert g.has_edge_between(1, 2)
    assert F.allclose(g.ndata['h'], F.tensor([[1.], [2.], [3.]]))
    assert F.allclose(g.edata['h'], F.tensor([[1., 2.], [1., 2.],
                                              [2., 3.], [2., 3.]]))

265
266
def test_batch_send():
    g = generate_graph()
267
    def _fmsg(edges):
268
        assert tuple(F.shape(edges.src['h'])) == (5, D)
269
        return {'m' : edges.src['h']}
Minjie Wang's avatar
Minjie Wang committed
270
    g.register_message_func(_fmsg)
271
    # many-many send
272
273
    u = F.tensor([0, 0, 0, 0, 0])
    v = F.tensor([1, 2, 3, 4, 5])
274
    g.send((u, v))
275
    # one-many send
276
277
    u = F.tensor([0])
    v = F.tensor([1, 2, 3, 4, 5])
278
    g.send((u, v))
279
    # many-one send
280
281
    u = F.tensor([1, 2, 3, 4, 5])
    v = F.tensor([9])
282
    g.send((u, v))
283

284
def test_batch_recv():
Minjie Wang's avatar
Minjie Wang committed
285
    # basic recv test
286
    g = generate_graph()
Minjie Wang's avatar
Minjie Wang committed
287
288
289
    g.register_message_func(message_func)
    g.register_reduce_func(reduce_func)
    g.register_apply_node_func(apply_node_func)
290
291
    u = F.tensor([0, 0, 0, 4, 5, 6])
    v = F.tensor([1, 2, 3, 9, 9, 9])
Minjie Wang's avatar
Minjie Wang committed
292
    reduce_msg_shapes.clear()
293
    g.send((u, v))
294
    g.recv(F.unique(v))
Minjie Wang's avatar
Minjie Wang committed
295
296
297
    assert(reduce_msg_shapes == {(1, 3, D), (3, 1, D)})
    reduce_msg_shapes.clear()

298
299
300
301
302
303
304
def test_apply_nodes():
    def _upd(nodes):
        return {'h' : nodes.data['h'] * 2}
    g = generate_graph()
    g.register_apply_node_func(_upd)
    old = g.ndata['h']
    g.apply_nodes()
305
306
    assert F.allclose(old * 2, g.ndata['h'])
    u = F.tensor([0, 3, 4, 6])
307
    g.apply_nodes(lambda nodes : {'h' : nodes.data['h'] * 0.}, u)
308
    assert F.allclose(F.gather_row(g.ndata['h'], u), F.zeros((4, D)))
309

310
def test_apply_edges():
311
312
313
    def _upd(edges):
        return {'w' : edges.data['w'] * 2}
    g = generate_graph()
314
    g.register_apply_edge_func(_upd)
315
    old = g.edata['w']
316
    g.apply_edges()
317
318
319
    assert F.allclose(old * 2, g.edata['w'])
    u = F.tensor([0, 0, 0, 4, 5, 6])
    v = F.tensor([1, 2, 3, 9, 9, 9])
320
    g.apply_edges(lambda edges : {'w' : edges.data['w'] * 0.}, (u, v))
321
    eid = g.edge_ids(u, v)
322
    assert F.allclose(F.gather_row(g.edata['w'], eid), F.zeros((6, D)))
323

324
325
def test_update_routines():
    g = generate_graph()
Minjie Wang's avatar
Minjie Wang committed
326
327
328
    g.register_message_func(message_func)
    g.register_reduce_func(reduce_func)
    g.register_apply_node_func(apply_node_func)
329

330
    # send_and_recv
331
    reduce_msg_shapes.clear()
332
333
    u = [0, 0, 0, 4, 5, 6]
    v = [1, 2, 3, 9, 9, 9]
334
    g.send_and_recv((u, v))
335
336
    assert(reduce_msg_shapes == {(1, 3, D), (3, 1, D)})
    reduce_msg_shapes.clear()
337
338
339
    try:
        g.send_and_recv([u, v])
        assert False
340
    except:
341
        pass
342

343
    # pull
344
    v = F.tensor([1, 2, 3, 9])
345
    reduce_msg_shapes.clear()
346
    g.pull(v)
347
348
349
    assert(reduce_msg_shapes == {(1, 8, D), (3, 1, D)})
    reduce_msg_shapes.clear()

350
    # push
351
    v = F.tensor([0, 1, 2, 3])
352
    reduce_msg_shapes.clear()
353
    g.push(v)
354
355
356
357
358
359
360
361
362
    assert(reduce_msg_shapes == {(1, 3, D), (8, 1, D)})
    reduce_msg_shapes.clear()

    # update_all
    reduce_msg_shapes.clear()
    g.update_all()
    assert(reduce_msg_shapes == {(1, 8, D), (9, 1, D)})
    reduce_msg_shapes.clear()

363
364
365
366
367
368
369
370
def test_recv_0deg():
    # test recv with 0deg nodes;
    g = DGLGraph()
    g.add_nodes(2)
    g.add_edge(0, 1)
    def _message(edges):
        return {'m' : edges.src['h']}
    def _reduce(nodes):
371
        return {'h' : nodes.data['h'] + F.sum(nodes.mailbox['m'], 1)}
372
373
374
    def _apply(nodes):
        return {'h' : nodes.data['h'] * 2}
    def _init2(shape, dtype, ctx, ids):
375
        return 2 + F.zeros(shape, dtype, ctx)
376
377
378
379
380
    g.register_message_func(_message)
    g.register_reduce_func(_reduce)
    g.register_apply_node_func(_apply)
    g.set_n_initializer(_init2, 'h')
    # test#1: recv both 0deg and non-0deg nodes
381
    old = F.randn((2, 5))
382
383
384
385
386
    g.ndata['h'] = old
    g.send((0, 1))
    g.recv([0, 1])
    new = g.ndata.pop('h')
    # 0deg check: initialized with the func and got applied
387
    assert F.allclose(new[0], F.full_1d(5, 4, F.float32))
388
    # non-0deg check
389
    assert F.allclose(new[1], F.sum(old, 0) * 2)
390
391

    # test#2: recv only 0deg node is equal to apply
392
    old = F.randn((2, 5))
393
394
395
396
397
    g.ndata['h'] = old
    g.send((0, 1))
    g.recv(0)
    new = g.ndata.pop('h')
    # 0deg check: equal to apply_nodes
398
    assert F.allclose(new[0], 2 * old[0])
399
    # non-0deg check: untouched
400
    assert F.allclose(new[1], old[1])
401
402
403
404
405
406
407
408
409

def test_recv_0deg_newfld():
    # test recv with 0deg nodes; the reducer also creates a new field
    g = DGLGraph()
    g.add_nodes(2)
    g.add_edge(0, 1)
    def _message(edges):
        return {'m' : edges.src['h']}
    def _reduce(nodes):
410
        return {'h1' : nodes.data['h'] + F.sum(nodes.mailbox['m'], 1)}
411
412
413
    def _apply(nodes):
        return {'h1' : nodes.data['h1'] * 2}
    def _init2(shape, dtype, ctx, ids):
414
        return 2 + F.zeros(shape, dtype=dtype, ctx=ctx)
415
416
417
418
    g.register_message_func(_message)
    g.register_reduce_func(_reduce)
    g.register_apply_node_func(_apply)
    # test#1: recv both 0deg and non-0deg nodes
419
    old = F.randn((2, 5))
420
421
422
423
424
425
    g.set_n_initializer(_init2, 'h1')
    g.ndata['h'] = old
    g.send((0, 1))
    g.recv([0, 1])
    new = g.ndata.pop('h1')
    # 0deg check: initialized with the func and got applied
426
    assert F.allclose(new[0], F.full_1d(5, 4, dtype=F.float32))
427
    # non-0deg check
428
    assert F.allclose(new[1], F.sum(old, 0) * 2)
429
430

    # test#2: recv only 0deg node
431
    old = F.randn((2, 5))
432
    g.ndata['h'] = old
433
    g.ndata['h1'] = F.full((2, 5), -1, F.int64)  # this is necessary
434
435
436
437
    g.send((0, 1))
    g.recv(0)
    new = g.ndata.pop('h1')
    # 0deg check: fallback to apply
438
    assert F.allclose(new[0], F.full_1d(5, -2, F.int64))
439
    # non-0deg check: not changed
440
    assert F.allclose(new[1], F.full_1d(5, -1, F.int64))
441
442
443

def test_update_all_0deg():
    # test#1
444
    g = DGLGraph()
Minjie Wang's avatar
Minjie Wang committed
445
    g.add_nodes(5)
446
447
448
449
    g.add_edge(1, 0)
    g.add_edge(2, 0)
    g.add_edge(3, 0)
    g.add_edge(4, 0)
450
451
452
    def _message(edges):
        return {'m' : edges.src['h']}
    def _reduce(nodes):
453
        return {'h' : nodes.data['h'] + F.sum(nodes.mailbox['m'], 1)}
454
455
    def _apply(nodes):
        return {'h' : nodes.data['h'] * 2}
456
    def _init2(shape, dtype, ctx, ids):
457
        return 2 + F.zeros(shape, dtype, ctx)
458
    g.set_n_initializer(_init2, 'h')
459
    old_repr = F.randn((5, 5))
460
    g.ndata['h'] = old_repr
461
    g.update_all(_message, _reduce, _apply)
462
    new_repr = g.ndata['h']
463
464
    # the first row of the new_repr should be the sum of all the node
    # features; while the 0-deg nodes should be initialized by the
465
    # initializer and applied with UDF.
466
467
    assert F.allclose(new_repr[1:], 2*(2+F.zeros((4,5))))
    assert F.allclose(new_repr[0], 2 * F.sum(old_repr, 0))
468

469
470
471
472
473
474
475
476
    # test#2: graph with no edge
    g = DGLGraph()
    g.add_nodes(5)
    g.set_n_initializer(_init2, 'h')
    g.ndata['h'] = old_repr
    g.update_all(_message, _reduce, _apply)
    new_repr = g.ndata['h']
    # should fallback to apply
477
    assert F.allclose(new_repr, 2*old_repr)
478

479
def test_pull_0deg():
480
    g = DGLGraph()
Minjie Wang's avatar
Minjie Wang committed
481
    g.add_nodes(2)
482
    g.add_edge(0, 1)
483
484
485
    def _message(edges):
        return {'m' : edges.src['h']}
    def _reduce(nodes):
486
        return {'h' : nodes.data['h'] + F.sum(nodes.mailbox['m'], 1)}
487
488
489
    def _apply(nodes):
        return {'h' : nodes.data['h'] * 2}
    def _init2(shape, dtype, ctx, ids):
490
        return 2 + F.zeros(shape, dtype, ctx)
491
492
493
494
495
    g.register_message_func(_message)
    g.register_reduce_func(_reduce)
    g.register_apply_node_func(_apply)
    g.set_n_initializer(_init2, 'h')
    # test#1: pull both 0deg and non-0deg nodes
496
    old = F.randn((2, 5))
497
498
499
500
    g.ndata['h'] = old
    g.pull([0, 1])
    new = g.ndata.pop('h')
    # 0deg check: initialized with the func and got applied
501
    assert F.allclose(new[0], F.full_1d(5, 4, dtype=F.float32))
502
    # non-0deg check
503
    assert F.allclose(new[1], F.sum(old, 0) * 2)
504
505

    # test#2: pull only 0deg node
506
    old = F.randn((2, 5))
507
508
509
510
    g.ndata['h'] = old
    g.pull(0)
    new = g.ndata.pop('h')
    # 0deg check: fallback to apply
511
    assert F.allclose(new[0], 2*old[0])
512
    # non-0deg check: not touched
513
    assert F.allclose(new[1], old[1])
514

515
516
517
518
519
520
521
522
def test_send_multigraph():
    g = DGLGraph(multigraph=True)
    g.add_nodes(3)
    g.add_edge(0, 1)
    g.add_edge(0, 1)
    g.add_edge(0, 1)
    g.add_edge(2, 1)

523
524
525
526
527
    def _message_a(edges):
        return {'a': edges.data['a']}
    def _message_b(edges):
        return {'a': edges.data['a'] * 3}
    def _reduce(nodes):
528
        return {'a': F.max(nodes.mailbox['a'], 1)}
529
530

    def answer(*args):
531
        return F.max(F.stack(args, 0), 0)
532
533

    # send by eid
534
535
    old_repr = F.randn((4, 5))
    g.ndata['a'] = F.zeros((3, 5))
536
537
538
539
    g.edata['a'] = old_repr
    g.send([0, 2], message_func=_message_a)
    g.recv(1, _reduce)
    new_repr = g.ndata['a']
540
    assert F.allclose(new_repr[1], answer(old_repr[0], old_repr[2]))
541

542
    g.ndata['a'] = F.zeros((3, 5))
543
544
545
546
    g.edata['a'] = old_repr
    g.send([0, 2, 3], message_func=_message_a)
    g.recv(1, _reduce)
    new_repr = g.ndata['a']
547
    assert F.allclose(new_repr[1], answer(old_repr[0], old_repr[2], old_repr[3]))
548
549

    # send on multigraph
550
    g.ndata['a'] = F.zeros((3, 5))
551
552
553
554
    g.edata['a'] = old_repr
    g.send(([0, 2], [1, 1]), _message_a)
    g.recv(1, _reduce)
    new_repr = g.ndata['a']
555
    assert F.allclose(new_repr[1], F.max(old_repr, 0))
556
557

    # consecutive send and send_on
558
    g.ndata['a'] = F.zeros((3, 5))
559
560
561
562
563
    g.edata['a'] = old_repr
    g.send((2, 1), _message_a)
    g.send([0, 1], message_func=_message_b)
    g.recv(1, _reduce)
    new_repr = g.ndata['a']
564
    assert F.allclose(new_repr[1], answer(old_repr[0] * 3, old_repr[1] * 3, old_repr[3]))
565
566

    # consecutive send_on
567
    g.ndata['a'] = F.zeros((3, 5))
568
569
570
571
572
    g.edata['a'] = old_repr
    g.send(0, message_func=_message_a)
    g.send(1, message_func=_message_b)
    g.recv(1, _reduce)
    new_repr = g.ndata['a']
573
    assert F.allclose(new_repr[1], answer(old_repr[0], old_repr[1] * 3))
574
575

    # send_and_recv_on
576
    g.ndata['a'] = F.zeros((3, 5))
577
578
579
    g.edata['a'] = old_repr
    g.send_and_recv([0, 2, 3], message_func=_message_a, reduce_func=_reduce)
    new_repr = g.ndata['a']
580
581
    assert F.allclose(new_repr[1], answer(old_repr[0], old_repr[2], old_repr[3]))
    assert F.allclose(new_repr[[0, 2]], F.zeros((2, 5)))
582

583
584
585
586
587
588
589
590
def test_dynamic_addition():
    N = 3
    D = 1

    g = DGLGraph()

    # Test node addition
    g.add_nodes(N)
591
592
    g.ndata.update({'h1': F.randn((N, D)),
                    'h2': F.randn((N, D))})
593
    g.add_nodes(3)
594
    assert g.ndata['h1'].shape[0] == g.ndata['h2'].shape[0] == N + 3
595
596
597
598

    # Test edge addition
    g.add_edge(0, 1)
    g.add_edge(1, 0)
599
600
    g.edata.update({'h1': F.randn((2, D)),
                    'h2': F.randn((2, D))})
601
    assert g.edata['h1'].shape[0] == g.edata['h2'].shape[0] == 2
602
603

    g.add_edges([0, 2], [2, 0])
604
    g.edata['h1'] = F.randn((4, D))
605
    assert g.edata['h1'].shape[0] == g.edata['h2'].shape[0] == 4
606
607

    g.add_edge(1, 2)
608
    g.edges[4].data['h1'] = F.randn((1, D))
609
    assert g.edata['h1'].shape[0] == g.edata['h2'].shape[0] == 5
610

611
    # test add edge with part of the features
612
    g.add_edge(2, 1, {'h1': F.randn((1, D))})
613
614
    assert len(g.edata['h1']) == len(g.edata['h2'])

615

Haibin Lin's avatar
Haibin Lin committed
616
617
618
619
620
def test_repr():
    G = dgl.DGLGraph()
    G.add_nodes(10)
    G.add_edge(0, 1)
    repr_string = G.__repr__()
Minjie Wang's avatar
Minjie Wang committed
621
    print(repr_string)
622
    G.ndata['x'] = F.zeros((10, 5))
Haibin Lin's avatar
Haibin Lin committed
623
    G.add_edges([0, 1], 2)
624
    G.edata['y'] = F.zeros((3, 4))
Haibin Lin's avatar
Haibin Lin committed
625
    repr_string = G.__repr__()
Minjie Wang's avatar
Minjie Wang committed
626
    print(repr_string)
Haibin Lin's avatar
Haibin Lin committed
627

628
if __name__ == '__main__':
629
    test_nx_conversion()
630
    test_batch_setter_getter()
631
    test_batch_setter_autograd()
632
    test_batch_send()
633
    test_batch_recv()
634
    test_apply_nodes()
635
    test_apply_edges()
636
    test_update_routines()
637
638
639
    test_recv_0deg()
    test_recv_0deg_newfld()
    test_update_all_0deg()
640
    test_pull_0deg()
641
    test_send_multigraph()
642
    test_dynamic_addition()
Haibin Lin's avatar
Haibin Lin committed
643
    test_repr()