__init__.py 1.07 KB
Newer Older
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
from __future__ import absolute_import

import numpy as np
import mxnet as mx
import mxnet.ndarray as nd
import mxnet.autograd as autograd

def cuda():
    return mx.gpu()

def array_equal(a, b):
    return nd.equal(a, b).asnumpy().all()

def allclose(a, b):
    return np.allclose(a.asnumpy(), b.asnumpy(), rtol=1e-4, atol=1e-4)

def randn(shape):
    return nd.random.randn(*shape)

def attach_grad(x):
    x.attach_grad()
    return x

def backward(x, head_gradient=None):
    x.backward(head_gradient)

def grad(x):
    return x.grad

def is_no_grad(x):
    return (x != 0).sum() == 0

def full(shape, fill_value, dtype, ctx):
    return nd.full(shape, fill_value, dtype=dtype, ctx=ctx)

def narrow_row_set(x, start, stop, new):
    x[start:stop] = new

def sparse_to_numpy(x):
    return x.asscipy().todense().A

def clone(x):
    return x.copy()

def reduce_sum(x):
    return x.sum()


record_grad = autograd.record


class no_grad(object):
    def __init__(self):
        pass

    def __enter__(self):
        pass

    def __exit__(self, exc_type, exc_value, exc_traceback):
        pass