evaluate.py 2.35 KB
Newer Older
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
#!/usr/bin/env python
# -*- coding: utf-8 -*-

import inspect
import argparse
import numpy as np

from utils import Timer, TextColors, metrics
from clustering_benchmark import ClusteringBenchmark

def _read_meta(fn):
    labels = list()
    lb_set = set()
    with open(fn) as f:
        for lb in f.readlines():
            lb = int(lb.strip())
            labels.append(lb)
            lb_set.add(lb)
    return np.array(labels), lb_set


def evaluate(gt_labels, pred_labels, metric='pairwise'):
    if isinstance(gt_labels, str) and isinstance(pred_labels, str):
        print('[gt_labels] {}'.format(gt_labels))
        print('[pred_labels] {}'.format(pred_labels))
        gt_labels, gt_lb_set = _read_meta(gt_labels)
        pred_labels, pred_lb_set = _read_meta(pred_labels)

        print('#inst: gt({}) vs pred({})'.format(len(gt_labels),
                                                 len(pred_labels)))
        print('#cls: gt({}) vs pred({})'.format(len(gt_lb_set),
                                                len(pred_lb_set)))

    metric_func = metrics.__dict__[metric]

    with Timer('evaluate with {}{}{}'.format(TextColors.FATAL, metric,
                                             TextColors.ENDC)):
        result = metric_func(gt_labels, pred_labels)
    if isinstance(result, np.float):
        print('{}{}: {:.4f}{}'.format(TextColors.OKGREEN, metric, result,
                                      TextColors.ENDC))
    else:
        ave_pre, ave_rec, fscore = result
        print('{}ave_pre: {:.4f}, ave_rec: {:.4f}, fscore: {:.4f}{}'.format(
            TextColors.OKGREEN, ave_pre, ave_rec, fscore, TextColors.ENDC))

def evaluation(pred_labels, labels, metrics):
    print('==> evaluation')
    #pred_labels = g.ndata['pred_labels'].cpu().numpy()
    max_cluster = np.max(pred_labels)
    #gt_labels_all = g.ndata['labels'].cpu().numpy()
    gt_labels_all = labels
    pred_labels_all = pred_labels
    metric_list = metrics.split(',')
    for metric in metric_list:
        evaluate(gt_labels_all, pred_labels_all, metric)
    # H and C-scores
    gt_dict = {}
    pred_dict = {}
    for i in range(len(gt_labels_all)):
        gt_dict[str(i)] = gt_labels_all[i]
        pred_dict[str(i)] = pred_labels_all[i]
    bm = ClusteringBenchmark(gt_dict)
    scores = bm.evaluate_vmeasure(pred_dict)
    fmi_scores = bm.evaluate_fowlkes_mallows_score(pred_dict)
    print(scores)