"examples/vscode:/vscode.git/clone" did not exist on "7e687d5d40c34b4153e0ab1a94b9381756c94933"
deduce.py 5.69 KB
Newer Older
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
"""
This file re-uses implementation from https://github.com/yl-1993/learn-to-cluster
"""
import numpy as np
from sklearn import mixture
import torch
import dgl

from .density import density_to_peaks_vectorize, density_to_peaks

__all__ = ['peaks_to_labels', 'edge_to_connected_graph', 'decode', 'build_next_level']


def _find_parent(parent, u):
    idx = []
    # parent is a fixed point
    while (u != parent[u]):
        idx.append(u)
        u = parent[u]
    for i in idx:
        parent[i] = u
    return u

def edge_to_connected_graph(edges, num):
    parent = list(range(num))
    for u, v in edges:
        p_u = _find_parent(parent, u)
        p_v = _find_parent(parent, v)
        parent[p_u] = p_v

    for i in range(num):
        parent[i] = _find_parent(parent, i)
    remap = {}
    uf = np.unique(np.array(parent))
    for i, f in enumerate(uf):
        remap[f] = i
    cluster_id = np.array([remap[f] for f in parent])
    return cluster_id

def peaks_to_edges(peaks, dist2peak, tau):
    edges = []
    for src in peaks:
        dsts = peaks[src]
        dists = dist2peak[src]
        for dst, dist in zip(dsts, dists):
            if src == dst or dist >= 1 - tau:
                continue
            edges.append([src, dst])
    return edges

def peaks_to_labels(peaks, dist2peak, tau, inst_num):
    edges = peaks_to_edges(peaks, dist2peak, tau)
    pred_labels = edge_to_connected_graph(edges, inst_num)
    return pred_labels, edges

def get_dists(g, nbrs, use_gt):
    k = nbrs.shape[1]
    src_id = nbrs[:,1:].reshape(-1)
    dst_id = nbrs[:,0].repeat(k - 1)
    eids = g.edge_ids(src_id, dst_id)
    if use_gt:
        new_dists = (1 - g.edata['labels_edge'][eids]).reshape(-1, k - 1).float()
    else:
        new_dists = g.edata['prob_conn'][eids, 0].reshape(-1, k - 1)
    ind = torch.argsort(new_dists, 1)
    offset = torch.LongTensor((nbrs[:, 0] * (k - 1)).repeat(k - 1).reshape(-1, k - 1)).to(g.device)
    ind = ind + offset
    nbrs = torch.LongTensor(nbrs).to(g.device)
    new_nbrs = torch.take(nbrs[:,1:], ind)
    new_dists = torch.cat([torch.zeros((new_dists.shape[0], 1)).to(g.device), new_dists], dim=1)
    new_nbrs = torch.cat([torch.arange(new_nbrs.shape[0]).view(-1, 1).to(g.device), new_nbrs], dim=1)
    return new_nbrs.cpu().detach().numpy(), new_dists.cpu().detach().numpy()

def get_edge_dist(g, threshold):
    if threshold == 'prob':
        return g.edata['prob_conn'][:,0]
    return 1 - g.edata['raw_affine']

def tree_generation(ng):
    ng.ndata['keep_eid'] = torch.zeros(ng.number_of_nodes()).long() - 1
    def message_func(edges):
        return {'mval': edges.data['edge_dist'],
                'meid': edges.data[dgl.EID]}
    def reduce_func(nodes):
        ind = torch.min(nodes.mailbox['mval'], dim=1)[1]
        keep_eid = nodes.mailbox['meid'].gather(1, ind.view(-1, 1))
        return {'keep_eid': keep_eid[:, 0]}
    node_order = dgl.traversal.topological_nodes_generator(ng)
    ng.prop_nodes(node_order, message_func, reduce_func)
    eids = ng.ndata['keep_eid']
    eids = eids[eids > -1]
    edges = ng.find_edges(eids)
    treeg = dgl.graph(edges, num_nodes=ng.number_of_nodes())
    return treeg

def peak_propogation(treeg):
    treeg.ndata['pred_labels'] = torch.zeros(treeg.number_of_nodes()).long() - 1
    peaks = torch.where(treeg.in_degrees() == 0)[0].cpu().numpy()
    treeg.ndata['pred_labels'][peaks] = torch.arange(peaks.shape[0])
    def message_func(edges):
        return {'mlb': edges.src['pred_labels']}
    def reduce_func(nodes):
        return {'pred_labels': nodes.mailbox['mlb'][:, 0]}
    node_order = dgl.traversal.topological_nodes_generator(treeg)
    treeg.prop_nodes(node_order, message_func, reduce_func)
    pred_labels = treeg.ndata['pred_labels'].cpu().numpy()
    return peaks, pred_labels

def decode(g, tau, threshold, use_gt,
           ids=None, global_edges=None, global_num_nodes=None, global_peaks=None):
    # Edge filtering with tau and density
    den_key = 'density' if use_gt else 'pred_den'
    g = g.local_var()
    g.edata['edge_dist'] = get_edge_dist(g, threshold)
    g.apply_edges(lambda edges: {'keep': (edges.src[den_key] > edges.dst[den_key]).long() * \
                                         (edges.data['edge_dist'] < 1 - tau).long()})
    eids = torch.where(g.edata['keep'] == 0)[0]
    ng = dgl.remove_edges(g, eids)

    # Tree generation
    ng.edata[dgl.EID] = torch.arange(ng.number_of_edges())
    treeg = tree_generation(ng)
    # Label propogation
    peaks, pred_labels = peak_propogation(treeg)

    if ids is None:
        return pred_labels, peaks

    # Merge with previous layers
    src, dst = treeg.edges()
    new_global_edges = (global_edges[0] + ids[src.numpy()].tolist(), 
                        global_edges[1] + ids[dst.numpy()].tolist()) 
    global_treeg = dgl.graph(new_global_edges, num_nodes=global_num_nodes)
    global_peaks, global_pred_labels = peak_propogation(global_treeg)
    return pred_labels, peaks, new_global_edges, global_pred_labels, global_peaks

def build_next_level(features, labels, peaks,
                     global_features, global_pred_labels, global_peaks):
    global_peak_to_label = global_pred_labels[global_peaks]
    global_label_to_peak = np.zeros_like(global_peak_to_label)
    for i, pl in enumerate(global_peak_to_label):
        global_label_to_peak[pl] = i
    cluster_ind = np.split(np.argsort(global_pred_labels),
                           np.unique(np.sort(global_pred_labels), return_index=True)[1][1:])
    cluster_features = np.zeros((len(peaks), global_features.shape[1]))
    for pi in range(len(peaks)):
        cluster_features[global_label_to_peak[pi],:] = np.mean(global_features[cluster_ind[pi],:], axis=0)
    features = features[peaks]
    labels = labels[peaks]
    return features, labels, cluster_features