ndarray.cc 16 KB
Newer Older
Minjie Wang's avatar
Minjie Wang committed
1
2
3
4
5
/*!
 *  Copyright (c) 2017 by Contributors
 * \file ndarray.cc
 * \brief NDArray container infratructure.
 */
6
#include <string.h>
Minjie Wang's avatar
Minjie Wang committed
7
8
9
10
#include <dmlc/logging.h>
#include <dgl/runtime/ndarray.h>
#include <dgl/runtime/c_runtime_api.h>
#include <dgl/runtime/device_api.h>
11
12
#include <dgl/runtime/shared_mem.h>
#include <dgl/zerocopy_serializer.h>
13
#include <dgl/runtime/tensordispatch.h>
Minjie Wang's avatar
Minjie Wang committed
14
15
16
17
18
#include "runtime_base.h"

// deleter for arrays used by DLPack exporter
extern "C" void NDArrayDLPackDeleter(DLManagedTensor* tensor);

19
namespace dgl {
Minjie Wang's avatar
Minjie Wang committed
20
21
22
23
24
25
26
27
28
29
30
31
32
33
namespace runtime {

inline void VerifyDataType(DLDataType dtype) {
  CHECK_GE(dtype.lanes, 1);
  if (dtype.code == kDLFloat) {
    CHECK_EQ(dtype.bits % 8, 0);
  } else {
    CHECK_EQ(dtype.bits % 8, 0);
  }
  CHECK_EQ(dtype.bits & (dtype.bits - 1), 0);
}

inline size_t GetDataSize(const DLTensor& arr) {
  size_t size = 1;
34
  for (dgl_index_t i = 0; i < arr.ndim; ++i) {
Minjie Wang's avatar
Minjie Wang committed
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
    size *= arr.shape[i];
  }
  size *= (arr.dtype.bits * arr.dtype.lanes + 7) / 8;
  return size;
}

inline size_t GetDataAlignment(const DLTensor& arr) {
  size_t align = (arr.dtype.bits / 8) * arr.dtype.lanes;
  if (align < kAllocAlignment) return kAllocAlignment;
  return align;
}

struct NDArray::Internal {
  // Default deleter for the container
  static void DefaultDeleter(NDArray::Container* ptr) {
50
    using dgl::runtime::NDArray;
Minjie Wang's avatar
Minjie Wang committed
51
52
    if (ptr->manager_ctx != nullptr) {
      static_cast<NDArray::Container*>(ptr->manager_ctx)->DecRef();
53
54
55
56
#ifndef _WIN32
    } else if (ptr->mem) {
      ptr->mem = nullptr;
#endif  // _WIN32
Minjie Wang's avatar
Minjie Wang committed
57
    } else if (ptr->dl_tensor.data != nullptr) {
58
      dgl::runtime::DeviceAPI::Get(ptr->dl_tensor.ctx)->FreeDataSpace(
Minjie Wang's avatar
Minjie Wang committed
59
60
61
62
63
64
          ptr->dl_tensor.ctx, ptr->dl_tensor.data);
    }
    delete ptr;
  }
  // Deleter for NDArray converted from DLPack
  // This is used from data which is passed from external DLPack(DLManagedTensor)
65
  // that are not allocated inside of DGL.
Minjie Wang's avatar
Minjie Wang committed
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
  // This enables us to create NDArray from memory allocated by other
  // frameworks that are DLPack compatible
  static void DLPackDeleter(NDArray::Container* ptr) {
    DLManagedTensor* tensor = static_cast<DLManagedTensor*>(ptr->manager_ctx);
    if (tensor->deleter != nullptr) {
      (*tensor->deleter)(tensor);
    }
    delete ptr;
  }
  // Local create function which allocates tensor metadata
  // but does not allocate space for the data.
  static NDArray Create(std::vector<int64_t> shape,
                        DLDataType dtype,
                        DLContext ctx) {
    VerifyDataType(dtype);
    // critical zone
    NDArray::Container* data = new NDArray::Container();
    data->deleter = DefaultDeleter;
    NDArray ret(data);
    ret.data_ = data;
    // RAII now in effect
    // setup shape
    data->shape_ = std::move(shape);
    data->dl_tensor.shape = dmlc::BeginPtr(data->shape_);
    data->dl_tensor.ndim = static_cast<int>(data->shape_.size());
91
92
93
94
95
96
97
    // setup stride (this should be optional, but some framework
    //   does not support NULL stride and thus will crash the program).
    data->stride_.resize(data->dl_tensor.ndim, 1);
    for (int i = data->dl_tensor.ndim - 2; i >= 0; --i) {
      data->stride_[i] = data->shape_[i+1] * data->stride_[i+1];
    }
    data->dl_tensor.strides = dmlc::BeginPtr(data->stride_);
Minjie Wang's avatar
Minjie Wang committed
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
    // setup dtype
    data->dl_tensor.dtype = dtype;
    // setup ctx
    data->dl_tensor.ctx = ctx;
    return ret;
  }
  // Implementation of API function
  static DLTensor* MoveAsDLTensor(NDArray arr) {
    DLTensor* tensor = const_cast<DLTensor*>(arr.operator->());
    CHECK(reinterpret_cast<DLTensor*>(arr.data_) == tensor);
    arr.data_ = nullptr;
    return tensor;
  }
  // Container to DLManagedTensor
  static DLManagedTensor* ToDLPack(NDArray::Container* from) {
    CHECK(from != nullptr);
    DLManagedTensor* ret = new DLManagedTensor();
    ret->dl_tensor = from->dl_tensor;
    ret->manager_ctx = from;
    from->IncRef();
    ret->deleter = NDArrayDLPackDeleter;
    return ret;
  }
};

123
124
125
126
size_t NDArray::GetSize() const {
  return GetDataSize(data_->dl_tensor);
}

127
int64_t NDArray::NumElements() const {
128
129
  if (data_->dl_tensor.ndim == 0)
    return 0;
130
131
132
133
134
135
136
  int64_t size = 1;
  for (int i = 0; i < data_->dl_tensor.ndim; ++i) {
    size *= data_->dl_tensor.shape[i];
  }
  return size;
}

137
138
139
140
bool NDArray::IsContiguous() const {
  CHECK(data_ != nullptr);
  if (data_->dl_tensor.strides == nullptr)
    return true;
141
142
143
144
145
146
147
148
149
150

  // See https://github.com/dmlc/dgl/issues/2118 and PyTorch's compute_contiguous() implementation
  int64_t z = 1;
  for (int64_t i = data_->dl_tensor.ndim - 1; i >= 0; --i) {
    if (data_->dl_tensor.shape[i] != 1) {
      if (data_->dl_tensor.strides[i] == z)
        z *= data_->dl_tensor.shape[i];
      else
        return false;
    }
151
  }
152
  return true;
153
154
}

Minjie Wang's avatar
Minjie Wang committed
155
NDArray NDArray::CreateView(std::vector<int64_t> shape,
156
157
                            DLDataType dtype,
                            int64_t offset) {
Minjie Wang's avatar
Minjie Wang committed
158
  CHECK(data_ != nullptr);
159
  CHECK(IsContiguous()) << "Can only create view for compact tensor";
Minjie Wang's avatar
Minjie Wang committed
160
161
162
163
164
165
166
167
168
169
  NDArray ret = Internal::Create(shape, dtype, data_->dl_tensor.ctx);
  ret.data_->dl_tensor.byte_offset =
      this->data_->dl_tensor.byte_offset;
  size_t curr_size = GetDataSize(this->data_->dl_tensor);
  size_t view_size = GetDataSize(ret.data_->dl_tensor);
  CHECK_LE(view_size, curr_size)
      << "Tries to create a view that has bigger memory than current one";
  // increase ref count
  this->data_->IncRef();
  ret.data_->manager_ctx = this->data_;
170
171
  ret.data_->dl_tensor.data =
    static_cast<char*>(this->data_->dl_tensor.data) + offset;
Minjie Wang's avatar
Minjie Wang committed
172
173
174
175
176
177
178
  return ret;
}

DLManagedTensor* NDArray::ToDLPack() const {
  return Internal::ToDLPack(data_);
}

179
180
181
182
183
184
185
186
187
188
NDArray NDArray::EmptyShared(const std::string &name,
                       std::vector<int64_t> shape,
                       DLDataType dtype,
                       DLContext ctx, bool is_create) {
  NDArray ret = Internal::Create(shape, dtype, ctx);
  // setup memory content
  size_t size = GetDataSize(ret.data_->dl_tensor);
#ifndef _WIN32
  auto mem = std::make_shared<SharedMemory>(name);
  if (is_create) {
189
    ret.data_->dl_tensor.data = mem->CreateNew(size);
190
  } else {
191
    ret.data_->dl_tensor.data = mem->Open(size);
192
193
194
195
196
197
198
199
200
  }

  ret.data_->mem = mem;
#else
  LOG(FATAL) << "Windows doesn't support NDArray with shared memory";
#endif  // _WIN32
  return ret;
}

Minjie Wang's avatar
Minjie Wang committed
201
NDArray NDArray::Empty(std::vector<int64_t> shape,
202
203
                       DLDataType dtype,
                       DLContext ctx) {
204
205
206
207
  TensorDispatcher* td = TensorDispatcher::Global();
  if (td->IsAvailable())
    return td->Empty(shape, dtype, ctx);

Minjie Wang's avatar
Minjie Wang committed
208
209
210
211
  NDArray ret = Internal::Create(shape, dtype, ctx);
  // setup memory content
  size_t size = GetDataSize(ret.data_->dl_tensor);
  size_t alignment = GetDataAlignment(ret.data_->dl_tensor);
212
213
214
215
  if (size > 0)
    ret.data_->dl_tensor.data =
        DeviceAPI::Get(ret->ctx)->AllocDataSpace(
            ret->ctx, size, alignment, ret->dtype);
Minjie Wang's avatar
Minjie Wang committed
216
217
218
219
220
221
222
223
224
225
226
227
228
  return ret;
}

NDArray NDArray::FromDLPack(DLManagedTensor* tensor) {
  NDArray::Container* data = new NDArray::Container();
  data->deleter = Internal::DLPackDeleter;
  data->manager_ctx = tensor;
  data->dl_tensor = tensor->dl_tensor;
  return NDArray(data);
}

void NDArray::CopyFromTo(DLTensor* from,
                         DLTensor* to,
229
                         DGLStreamHandle stream) {
Minjie Wang's avatar
Minjie Wang committed
230
231
232
  size_t from_size = GetDataSize(*from);
  size_t to_size = GetDataSize(*to);
  CHECK_EQ(from_size, to_size)
233
    << "DGLArrayCopyFromTo: The size must exactly match";
Minjie Wang's avatar
Minjie Wang committed
234
235
236
237
238
239
240
241

  CHECK(from->ctx.device_type == to->ctx.device_type
        || from->ctx.device_type == kDLCPU
        || to->ctx.device_type == kDLCPU)
    << "Can not copy across different ctx types directly";

  // Use the context that is *not* a cpu context to get the correct device
  // api manager.
242
  DGLContext ctx = from->ctx.device_type != kDLCPU ? from->ctx : to->ctx;
Minjie Wang's avatar
Minjie Wang committed
243
244
245
246
247
248
249

  DeviceAPI::Get(ctx)->CopyDataFromTo(
    from->data, static_cast<size_t>(from->byte_offset),
    to->data, static_cast<size_t>(to->byte_offset),
    from_size, from->ctx, to->ctx, from->dtype, stream);
}

250
template<typename T>
251
252
NDArray NDArray::FromVector(const std::vector<T>& vec, DLContext ctx) {
  const DLDataType dtype = DLDataTypeTraits<T>::dtype;
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
  int64_t size = static_cast<int64_t>(vec.size());
  NDArray ret = NDArray::Empty({size}, dtype, DLContext{kDLCPU, 0});
  DeviceAPI::Get(ctx)->CopyDataFromTo(
      vec.data(),
      0,
      static_cast<T*>(ret->data),
      0,
      size * sizeof(T),
      DLContext{kDLCPU, 0},
      ctx,
      dtype,
      nullptr);
  return ret;
}

// export specializations
269
270
271
272
273
274
template NDArray NDArray::FromVector<int32_t>(const std::vector<int32_t>&, DLContext);
template NDArray NDArray::FromVector<int64_t>(const std::vector<int64_t>&, DLContext);
template NDArray NDArray::FromVector<uint32_t>(const std::vector<uint32_t>&, DLContext);
template NDArray NDArray::FromVector<uint64_t>(const std::vector<uint64_t>&, DLContext);
template NDArray NDArray::FromVector<float>(const std::vector<float>&, DLContext);
template NDArray NDArray::FromVector<double>(const std::vector<double>&, DLContext);
275

276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
template<typename T>
std::vector<T> NDArray::ToVector() const {
  const DLDataType dtype = DLDataTypeTraits<T>::dtype;
  CHECK(data_->dl_tensor.ndim == 1) << "ToVector() only supported for 1D arrays";
  CHECK(data_->dl_tensor.dtype == dtype) << "dtype mismatch";

  int64_t size = data_->dl_tensor.shape[0];
  std::vector<T> vec(size);
  const DLContext &ctx = data_->dl_tensor.ctx;
  DeviceAPI::Get(ctx)->CopyDataFromTo(
      static_cast<T*>(data_->dl_tensor.data),
      0,
      vec.data(),
      0,
      size * sizeof(T),
      ctx,
      DLContext{kDLCPU, 0},
      dtype,
      nullptr);
  return vec;
}

template std::vector<int32_t> NDArray::ToVector<int32_t>() const;
template std::vector<int64_t> NDArray::ToVector<int64_t>() const;
template std::vector<uint32_t> NDArray::ToVector<uint32_t>() const;
template std::vector<uint64_t> NDArray::ToVector<uint64_t>() const;
template std::vector<float> NDArray::ToVector<float>() const;
template std::vector<double> NDArray::ToVector<double>() const;
304

305
306
307
308
309
310
311
312
#ifndef _WIN32
std::shared_ptr<SharedMemory> NDArray::GetSharedMem() const {
  return this->data_->mem;
}
#endif  // _WIN32


void NDArray::Save(dmlc::Stream* strm) const {
313
  auto zc_strm = dynamic_cast<StreamWithBuffer*>(strm);
314
315
316
317
318
319
320
321
  if (zc_strm) {
    zc_strm->PushNDArray(*this);
    return;
  }
  SaveDLTensor(strm, const_cast<DLTensor*>(operator->()));
}

bool NDArray::Load(dmlc::Stream* strm) {
322
  auto zc_strm = dynamic_cast<StreamWithBuffer*>(strm);
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
  if (zc_strm) {
    *this = zc_strm->PopNDArray();
    return true;
  }
  uint64_t header, reserved;
  CHECK(strm->Read(&header))
      << "Invalid DLTensor file format";
  CHECK(strm->Read(&reserved))
      << "Invalid DLTensor file format";
  CHECK(header == kDGLNDArrayMagic)
      << "Invalid DLTensor file format";
  DLContext ctx;
  int ndim;
  DLDataType dtype;
  CHECK(strm->Read(&ctx))
      << "Invalid DLTensor file format";
  CHECK(strm->Read(&ndim))
      << "Invalid DLTensor file format";
  CHECK(strm->Read(&dtype))
      << "Invalid DLTensor file format";
  CHECK_EQ(ctx.device_type, kDLCPU)
      << "Invalid DLTensor context: can only save as CPU tensor";
  std::vector<int64_t> shape(ndim);
  if (ndim != 0) {
    CHECK(strm->ReadArray(&shape[0], ndim))
        << "Invalid DLTensor file format";
  }
  NDArray ret = NDArray::Empty(shape, dtype, ctx);
  int64_t num_elems = 1;
  int elem_bytes = (ret->dtype.bits + 7) / 8;
  for (int i = 0; i < ret->ndim; ++i) {
    num_elems *= ret->shape[i];
  }
  int64_t data_byte_size;
  CHECK(strm->Read(&data_byte_size))
      << "Invalid DLTensor file format";
  CHECK(data_byte_size == num_elems * elem_bytes)
      << "Invalid DLTensor file format";
  if (data_byte_size != 0)  {
    // strm->Read will return the total number of elements successfully read.
    // Therefore if data_byte_size is zero, the CHECK below would fail.
    CHECK(strm->Read(ret->data, data_byte_size))
        << "Invalid DLTensor file format";
  }
  if (!DMLC_IO_NO_ENDIAN_SWAP) {
    dmlc::ByteSwap(ret->data, elem_bytes, num_elems);
  }
  *this = ret;
  return true;
}


Minjie Wang's avatar
Minjie Wang committed
375
}  // namespace runtime
376
}  // namespace dgl
Minjie Wang's avatar
Minjie Wang committed
377

378
using namespace dgl::runtime;
Minjie Wang's avatar
Minjie Wang committed
379
380
381
382
383
384

void NDArrayDLPackDeleter(DLManagedTensor* tensor) {
  static_cast<NDArray::Container*>(tensor->manager_ctx)->DecRef();
  delete tensor;
}

385
int DGLArrayAlloc(const dgl_index_t* shape,
Minjie Wang's avatar
Minjie Wang committed
386
387
388
389
390
391
                  int ndim,
                  int dtype_code,
                  int dtype_bits,
                  int dtype_lanes,
                  int device_type,
                  int device_id,
392
                  DGLArrayHandle* out) {
Minjie Wang's avatar
Minjie Wang committed
393
394
395
396
397
398
399
400
401
402
403
404
405
  API_BEGIN();
  DLDataType dtype;
  dtype.code = static_cast<uint8_t>(dtype_code);
  dtype.bits = static_cast<uint8_t>(dtype_bits);
  dtype.lanes = static_cast<uint16_t>(dtype_lanes);
  DLContext ctx;
  ctx.device_type = static_cast<DLDeviceType>(device_type);
  ctx.device_id = device_id;
  *out = NDArray::Internal::MoveAsDLTensor(
      NDArray::Empty(std::vector<int64_t>(shape, shape + ndim), dtype, ctx));
  API_END();
}

406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
int DGLArrayAllocSharedMem(const char *mem_name,
                           const dgl_index_t *shape,
                           int ndim,
                           int dtype_code,
                           int dtype_bits,
                           int dtype_lanes,
                           bool is_create,
                           DGLArrayHandle* out) {
  API_BEGIN();
  DLDataType dtype;
  dtype.code = static_cast<uint8_t>(dtype_code);
  dtype.bits = static_cast<uint8_t>(dtype_bits);
  dtype.lanes = static_cast<uint16_t>(dtype_lanes);
  std::vector<int64_t> shape_vec(shape, shape + ndim);
  NDArray arr = NDArray::EmptyShared(mem_name, shape_vec, dtype,
                                     DLContext{kDLCPU, 0}, is_create);
  *out = NDArray::Internal::MoveAsDLTensor(arr);
  API_END();
}

426
int DGLArrayFree(DGLArrayHandle handle) {
Minjie Wang's avatar
Minjie Wang committed
427
428
429
430
431
  API_BEGIN();
  reinterpret_cast<NDArray::Container*>(handle)->DecRef();
  API_END();
}

432
433
434
int DGLArrayCopyFromTo(DGLArrayHandle from,
                       DGLArrayHandle to,
                       DGLStreamHandle stream) {
Minjie Wang's avatar
Minjie Wang committed
435
436
437
438
439
  API_BEGIN();
  NDArray::CopyFromTo(from, to, stream);
  API_END();
}

440
441
int DGLArrayFromDLPack(DLManagedTensor* from,
                       DGLArrayHandle* out) {
Minjie Wang's avatar
Minjie Wang committed
442
443
444
445
446
  API_BEGIN();
  *out = NDArray::Internal::MoveAsDLTensor(NDArray::FromDLPack(from));
  API_END();
}

447
448
449
450
451
452
453
inline bool is_aligned(const void* ptr, std::uintptr_t alignment) noexcept {
  auto iptr = reinterpret_cast<std::uintptr_t>(ptr);
  return !(iptr % alignment);
}

int DGLArrayToDLPack(DGLArrayHandle from, DLManagedTensor** out,
                     int alignment) {
Minjie Wang's avatar
Minjie Wang committed
454
  API_BEGIN();
455
456
457
458
459
460
461
462
463
464
  auto* nd_container = reinterpret_cast<NDArray::Container*>(from);
  DLTensor* nd = &(nd_container->dl_tensor);
  if (alignment != 0 && !is_aligned(nd->data, alignment)) {
    std::vector<int64_t> shape_vec(nd->shape, nd->shape + nd->ndim);
    NDArray copy_ndarray = NDArray::Empty(shape_vec, nd->dtype, nd->ctx);
    copy_ndarray.CopyFrom(nd);
    *out = copy_ndarray.ToDLPack();
  } else {
    *out = NDArray::Internal::ToDLPack(nd_container);
  }
Minjie Wang's avatar
Minjie Wang committed
465
466
467
  API_END();
}

468
void DGLDLManagedTensorCallDeleter(DLManagedTensor* dltensor) {
Minjie Wang's avatar
Minjie Wang committed
469
470
471
  (*(dltensor->deleter))(dltensor);
}

472
int DGLArrayCopyFromBytes(DGLArrayHandle handle,
Minjie Wang's avatar
Minjie Wang committed
473
474
475
                          void* data,
                          size_t nbytes) {
  API_BEGIN();
476
  DGLContext cpu_ctx;
Minjie Wang's avatar
Minjie Wang committed
477
478
479
480
  cpu_ctx.device_type = kDLCPU;
  cpu_ctx.device_id = 0;
  size_t arr_size = GetDataSize(*handle);
  CHECK_EQ(arr_size, nbytes)
481
      << "DGLArrayCopyFromBytes: size mismatch";
Minjie Wang's avatar
Minjie Wang committed
482
483
484
485
486
487
488
  DeviceAPI::Get(handle->ctx)->CopyDataFromTo(
      data, 0,
      handle->data, static_cast<size_t>(handle->byte_offset),
      nbytes, cpu_ctx, handle->ctx, handle->dtype, nullptr);
  API_END();
}

489
int DGLArrayCopyToBytes(DGLArrayHandle handle,
Minjie Wang's avatar
Minjie Wang committed
490
491
492
                        void* data,
                        size_t nbytes) {
  API_BEGIN();
493
  DGLContext cpu_ctx;
Minjie Wang's avatar
Minjie Wang committed
494
495
496
497
  cpu_ctx.device_type = kDLCPU;
  cpu_ctx.device_id = 0;
  size_t arr_size = GetDataSize(*handle);
  CHECK_EQ(arr_size, nbytes)
498
      << "DGLArrayCopyToBytes: size mismatch";
Minjie Wang's avatar
Minjie Wang committed
499
500
501
502
503
504
  DeviceAPI::Get(handle->ctx)->CopyDataFromTo(
      handle->data, static_cast<size_t>(handle->byte_offset),
      data, 0,
      nbytes, handle->ctx, cpu_ctx, handle->dtype, nullptr);
  API_END();
}