sddmm.cuh 15 KB
Newer Older
1
2
3
4
5
6
7
8
9
10
11
12
/*!
 *  Copyright (c) 2020 by Contributors
 * \file array/cuda/sddmm.cuh
 * \brief SDDMM CUDA kernel function header.
 */
#ifndef DGL_ARRAY_CUDA_SDDMM_CUH_
#define DGL_ARRAY_CUDA_SDDMM_CUH_

#include <dgl/bcast.h>
#include "macro.cuh"
#include "atomic.cuh"
#include "functor.cuh"
13
#include "fp16.cuh"
14
#include "./utils.h"
15
#include "./functor.cuh"
16
#include "../selector.h"
17
18
19
20
21
22
23
24
25
#include "../../runtime/cuda/cuda_common.h"

namespace dgl {

using namespace cuda;

namespace aten {
namespace cuda {

26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
#define SWITCH_OP(op, Op, ...)                                      \
  do {                                                              \
    if ((op) == "add") {                                            \
      typedef cuda::binary::Add<DType> Op;                          \
      { __VA_ARGS__ }                                               \
    } else if ((op) == "sub") {                                     \
      typedef cuda::binary::Sub<DType> Op;                          \
      { __VA_ARGS__ }                                               \
    } else if ((op) == "mul") {                                     \
      typedef cuda::binary::Mul<DType> Op;                          \
      { __VA_ARGS__ }                                               \
    } else if ((op) == "div") {                                     \
      typedef cuda::binary::Div<DType> Op;                          \
      { __VA_ARGS__ }                                               \
    } else if ((op) == "copy_lhs") {                                \
      typedef cuda::binary::CopyLhs<DType> Op;                      \
      { __VA_ARGS__ }                                               \
    } else if ((op) == "copy_rhs") {                                \
      typedef cuda::binary::CopyRhs<DType> Op;                      \
      { __VA_ARGS__ }                                               \
    } else if ((op) == "dot") {                                     \
      typedef cuda::binary::Dot<DType> Op;                          \
      { __VA_ARGS__ }                                               \
    } else {                                                        \
      LOG(FATAL) << "Unsupported SpMM/SDDMM binary operator: " << op;     \
    }                                                               \
  } while (0)

#define SWITCH_RHS(rhs_target, RhsTarget, ...)                        \
  do {                                                                \
    if ((rhs_target) == 0) {                                          \
      constexpr int RhsTarget = 0;                                    \
      { __VA_ARGS__ }                                                 \
    } else if ((rhs_target) == 1) {                                   \
      constexpr int RhsTarget = 1;                                    \
      { __VA_ARGS__ }                                                 \
    } else if ((rhs_target) == 2) {                                   \
      constexpr int RhsTarget = 2;                                    \
      { __VA_ARGS__ }                                                 \
    } else {                                                          \
      LOG(INFO) << "Invalid rhs target: " << (rhs_target);            \
    }                                                                 \
  } while (0)

#define SWITCH_TARGET(lhs_target, rhs_target, LhsTarget, RhsTarget, ...)\
  do {                                                                  \
    if ((lhs_target) == 0) {                                            \
      constexpr int LhsTarget = 0;                                      \
      SWITCH_RHS(rhs_target, RhsTarget, __VA_ARGS__);                   \
    } else if ((lhs_target) == 1) {                                     \
      constexpr int LhsTarget = 1;                                      \
      SWITCH_RHS(rhs_target, RhsTarget, __VA_ARGS__);                   \
    } else if ((lhs_target) == 2) {                                     \
      constexpr int LhsTarget = 2;                                      \
      SWITCH_RHS(rhs_target, RhsTarget, __VA_ARGS__);                   \
    } else {                                                            \
      LOG(INFO) << "Invalid lhs target: " << (lhs_target);              \
    }                                                                   \
  } while (0)

86
87
constexpr unsigned int full_mask = 0xffffffff;

88
89
90
91
92
93
94
95
/*!
 * \brief CUDA kernel of g-SDDMM on Coo format.
 * \note it uses edge parallel strategy, different threadblocks (on y-axis)
 *       is responsible for the computation on different edges. Threadblocks
 *       on the x-axis are responsible for the computation on different positions
 *       in feature dimension.
 */
template <typename Idx, typename DType, typename BinaryOp,
96
97
          bool UseBcast = false, bool UseIdx = false,
          int LhsTarget = 0, int RhsTarget = 2>
98
__global__ void SDDMMCooKernel(
99
100
101
102
103
104
  const DType* __restrict__ lhs,
  const DType* __restrict__ rhs,
  DType* __restrict__ out,
  const Idx* __restrict__ row,
  const Idx* __restrict__ col,
  const Idx* __restrict__ edge_map,
105
  int64_t N, int64_t M, int64_t E, int64_t reduce_size,
106
107
108
  const int64_t* __restrict__ lhs_off,
  const int64_t* __restrict__ rhs_off,
  int64_t lhs_len, int64_t rhs_len, int64_t out_len) {
109
110
111
112
113
114
115
116
  // SDDMM with COO.
  Idx ty = blockIdx.y * blockDim.y + threadIdx.y;
  const Idx stride_y = blockDim.y * gridDim.y;
  while (ty < E) {
    const Idx src = _ldg(row + ty);
    const Idx dst = _ldg(col + ty);
    const Idx eid = UseIdx ? _ldg(edge_map + ty) : ty;
    const DType* lhsoff = BinaryOp::use_lhs ?
117
      (lhs + Selector<LhsTarget>::Call(src, eid, dst) * lhs_len): nullptr;
118
    const DType* rhsoff = BinaryOp::use_rhs ?
119
      (rhs + Selector<RhsTarget>::Call(src, eid, dst) * rhs_len): nullptr;
120
121
122
123
    DType* outoff = out + eid * out_len;
    int tx = blockIdx.x * blockDim.x + threadIdx.x;
    const int stride_x = blockDim.x * gridDim.x;
    while (tx < out_len) {
124
125
      const Idx lhs_add = UseBcast ? lhs_off[tx] : tx;
      const Idx rhs_add = UseBcast ? rhs_off[tx] : tx;
126
127
128
129
130
131
132
133
134
135
136
      DType val = BinaryOp::Call(
          lhsoff + lhs_add * reduce_size,
          rhsoff + rhs_add * reduce_size,
          reduce_size);
      outoff[tx] = val;
      tx += stride_x;
    }
    ty += stride_y;
  }
}

137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
/*!
 * \brief CUDA kernel of SDDMM-dot on Coo format, accelerated with tree reduction.
 * \note it uses edge parallel strategy, different threadblocks (on y-axis)
 *       is responsible for the computation on different edges. Threadblocks
 *       on the x-axis are responsible for the computation on different positions
 *       in feature dimension.
 */
template <typename Idx, typename DType,
          bool UseBcast = false, bool UseIdx = false,
          int LhsTarget = 0, int RhsTarget = 2>
__global__ void SDDMMCooTreeReduceKernel(
  const DType* __restrict__ lhs,
  const DType* __restrict__ rhs,
  DType* __restrict__ out,
  const Idx* __restrict__ row,
  const Idx* __restrict__ col,
  const Idx* __restrict__ edge_map,
  int64_t N, int64_t M, int64_t E, int64_t reduce_size,
  const int64_t* __restrict__ lhs_off,
  const int64_t* __restrict__ rhs_off,
  int64_t lhs_len, int64_t rhs_len, int64_t out_len) {
  Idx ty = blockIdx.x * blockDim.y + threadIdx.y;
  if (ty < E) {
    const Idx src = _ldg(row + ty);
    const Idx dst = _ldg(col + ty);
    const Idx eid = UseIdx ? _ldg(edge_map + ty) : ty;
    const DType* lhsoff = lhs + Selector<LhsTarget>::Call(src, eid, dst) * lhs_len;
    const DType* rhsoff = rhs + Selector<RhsTarget>::Call(src, eid, dst) * rhs_len;
    DType* outoff = out + eid * out_len;
    int tx = threadIdx.x;  // tx < 32
    for (int i = blockIdx.y; i < out_len; i += gridDim.y) {  // over output feature dimension
      const Idx lhs_add = UseBcast ? __ldg(lhs_off + i) : i;
      const Idx rhs_add = UseBcast ? __ldg(rhs_off + i) : i;
170
      DType val = reduce::Sum<Idx, DType>::zero();;
Zihao Ye's avatar
Zihao Ye committed
171
      for (int j = tx; j < reduce_size; j += 64) {
172
        val += lhsoff[lhs_add * reduce_size + j] * rhsoff[rhs_add * reduce_size + j];
Zihao Ye's avatar
Zihao Ye committed
173
174
175
        if (j + 32 < reduce_size)
          val += lhsoff[lhs_add * reduce_size + j + 32] * rhsoff[rhs_add * reduce_size + j + 32];
      }
176
177
178
179
180
181
182
183
184
#pragma unroll
      for (int offset = 16; offset > 0; offset /= 2)
        val += __shfl_down_sync(full_mask, val, offset);
      if (tx == 0)
        outoff[i] = val;
    }
  }
}

185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
// Binary search the row_offsets to find the source node of the edge id.
template <typename Idx>
__device__ __forceinline__ Idx BinarySearchSrc(const Idx *array, Idx length, Idx eid) {
  Idx lo = 0, hi = length - 1;
  while (lo < hi) {
    Idx mid = (lo + hi) >> 1;
    if (_ldg(array + mid) <= eid) {
      lo = mid + 1;
    } else {
      hi = mid;
    }
  }
  // INVARIANT: lo == hi
  if (_ldg(array + hi) == eid) {
    return hi;
  } else {
    return hi - 1;
  }
}

/*!
 * \brief CUDA kernel of g-SDDMM on Csr format.
 * \note it uses edge parallel strategy, different threadblocks (on y-axis)
 *       is responsible for the computation on different edges. Threadblocks
 *       on the x-axis are responsible for the computation on different positions
 *       in feature dimension.
211
 *       To efficiently find the source node idx and destination node index of an
212
213
214
 *       given edge on Csr format, it uses binary search (time complexity O(log N)).
 */
template <typename Idx, typename DType, typename BinaryOp,
215
216
          bool UseBcast = false, bool UseIdx = false,
          int LhsTarget = 0, int RhsTarget = 2>
217
__global__ void SDDMMCsrKernel(
218
219
220
221
222
223
  const DType* __restrict__ lhs,
  const DType* __restrict__ rhs,
  DType* __restrict__ out,
  const Idx* __restrict__ indptr,
  const Idx* __restrict__ indices,
  const Idx* __restrict__ edge_map,
224
  int64_t N, int64_t M, int64_t E, int64_t reduce_size,
225
226
227
  const int64_t* __restrict__ lhs_off,
  const int64_t* __restrict__ rhs_off,
  int64_t lhs_len, int64_t rhs_len, int64_t out_len) {
228
229
230
231
232
233
234
235
236
  // SDDMM with Csr.
  Idx ty = blockIdx.y * blockDim.y + threadIdx.y;
  const Idx stride_y = blockDim.y * gridDim.y;
  while (ty < E) {
    const Idx src = BinarySearchSrc<Idx>(indptr, N + 1, ty);
    const Idx dst = _ldg(indices + ty);
    const Idx eid = UseIdx ? _ldg(edge_map + ty) : ty;
    int64_t tx = blockIdx.x * blockDim.x + threadIdx.x;
    const int64_t stride_x = blockDim.x * gridDim.x;
237
238
239
240
    const DType* lhsoff = BinaryOp::use_lhs ?
      (lhs + Selector<LhsTarget>::Call(src, eid, dst) * lhs_len): nullptr;
    const DType* rhsoff = BinaryOp::use_rhs ?
      (rhs + Selector<RhsTarget>::Call(src, eid, dst) * rhs_len): nullptr;
241
242
    DType* outoff = out + eid * out_len;
    while (tx < out_len) {
243
244
      const Idx lhs_add = UseBcast ? lhs_off[tx] : tx;
      const Idx rhs_add = UseBcast ? rhs_off[tx] : tx;
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
      DType val = BinaryOp::Call(
          lhsoff + lhs_add * reduce_size,
          rhsoff + rhs_add * reduce_size,
          reduce_size);
      outoff[tx] = val;
      tx += stride_x;
    }
    ty += stride_y;
  }
}

/*!
 * \brief CUDA implementation of g-SDDMM on Coo format.
 * \param bcast Broadcast information.
 * \param coo The Coo matrix.
260
261
 * \param lhs The left hand side operand feature.
 * \param rhs The right hand size operand feature.
262
263
 * \param out The result feature on edges.
 */
264
265
template <typename Idx, typename DType, typename Op,
          int LhsTarget = 0, int RhsTarget = 2>
266
267
268
void SDDMMCoo(
    const BcastOff& bcast,
    const COOMatrix& coo,
269
270
    NDArray lhs,
    NDArray rhs,
271
272
273
274
    NDArray out) {
  const Idx *row = coo.row.Ptr<Idx>();
  const Idx *col = coo.col.Ptr<Idx>();
  const Idx *edge_map = coo.data.Ptr<Idx>();
275
276
  const DType *lhs_data = lhs.Ptr<DType>();
  const DType *rhs_data = rhs.Ptr<DType>();
277
  DType *out_data = out.Ptr<DType>();
278
  cudaStream_t stream = runtime::getCurrentCUDAStream();
279

280
  int64_t *lhs_off = nullptr, *rhs_off = nullptr;
281
282
283
284
285
286
287
288
  int64_t len = bcast.out_len,
          lhs_len = bcast.lhs_len,
          rhs_len = bcast.rhs_len;
  int64_t reduce_dim = bcast.reduce_size;

  const int64_t nnz = coo.row->shape[0];
  const bool use_idx = !IsNullArray(coo.data);

289
290
291
292
293
294
295
296
297
  if (std::is_same<Op, binary::Dot<DType> >::value && reduce_dim >= 32) {
    const int ntx = 32;  // on feature dimension
    const int nty = 8;   // on out dimension
    const int nbx = (nnz + nty - 1) / nty;
    const int nby = FindNumBlocks<'y'>(len);
    const dim3 nblks(nbx, nby);
    const dim3 nthrs(ntx, nty);
    BCAST_IDX_CTX_SWITCH(bcast, use_idx, out->ctx, lhs_off, rhs_off, {
      CUDA_KERNEL_CALL((SDDMMCooTreeReduceKernel<Idx, DType, UseBcast, UseIdx, LhsTarget, RhsTarget>),
298
          nblks, nthrs, 0, stream,
299
300
301
302
303
          lhs_data, rhs_data, out_data,
          row, col, edge_map,
          coo.num_rows, coo.num_cols, nnz, reduce_dim,
          lhs_off, rhs_off,
          lhs_len, rhs_len, len);
304
    });
305
306
307
308
309
310
311
312
313
  } else {
    const int ntx = FindNumThreads(len);
    const int nty = CUDA_MAX_NUM_THREADS / ntx;
    const int nbx = (len + ntx - 1) / ntx;
    const int nby = FindNumBlocks<'y'>((nnz + nty - 1) / nty);
    const dim3 nblks(nbx, nby);
    const dim3 nthrs(ntx, nty);
    BCAST_IDX_CTX_SWITCH(bcast, use_idx, out->ctx, lhs_off, rhs_off, {
      CUDA_KERNEL_CALL((SDDMMCooKernel<Idx, DType, Op, UseBcast, UseIdx, LhsTarget, RhsTarget>),
314
          nblks, nthrs, 0, stream,
315
316
317
318
319
320
321
          lhs_data, rhs_data, out_data,
          row, col, edge_map,
          coo.num_rows, coo.num_cols, nnz, reduce_dim,
          lhs_off, rhs_off,
          lhs_len, rhs_len, len);
    });
  }
322
323
324
325
326
327
}

/*!
 * \brief CUDA implementation of g-SDDMM on Csr format.
 * \param bcast Broadcast information.
 * \param csr The Csr matrix.
328
329
 * \param lhs The left hand side operand feature.
 * \param rhs The right hand size operand feature.
330
331
 * \param out The result feature on edges.
 */
332
333
template <typename Idx, typename DType, typename Op,
          int LhsTarget = 0, int RhsTarget = 2>
334
335
336
void SDDMMCsr(
    const BcastOff& bcast,
    const CSRMatrix& csr,
337
338
339
340
    NDArray lhs,
    NDArray rhs,
    NDArray out) {
  const Idx *indptr = csr.indptr.Ptr<Idx>();
341
342
  const Idx *indices = csr.indices.Ptr<Idx>();
  const Idx *edge_map = csr.data.Ptr<Idx>();
343
344
  const DType *lhs_data = lhs.Ptr<DType>();
  const DType *rhs_data = rhs.Ptr<DType>();
345
  DType *out_data = out.Ptr<DType>();
346
  cudaStream_t stream = runtime::getCurrentCUDAStream();
347
348
  int64_t N = csr.num_rows, M = csr.num_cols, E = csr.indices->shape[0];

349
  int64_t *lhs_off = nullptr, *rhs_off = nullptr;
350
351
352
353
354
355
356
357
358
359
360
361
362
  int64_t len = bcast.out_len,
          lhs_len = bcast.lhs_len,
          rhs_len = bcast.rhs_len;
  int64_t reduce_dim = bcast.reduce_size;

  const int ntx = FindNumThreads(len);
  const int nty = CUDA_MAX_NUM_THREADS / ntx;
  const int nbx = (len + ntx - 1) / ntx;
  const int nby = FindNumBlocks<'y'>((E + nty - 1) / nty);
  const dim3 nblks(nbx, nby);
  const dim3 nthrs(ntx, nty);
  const bool use_idx = !IsNullArray(csr.data);

363
  BCAST_IDX_CTX_SWITCH(bcast, use_idx, out->ctx, lhs_off, rhs_off, {
364
    CUDA_KERNEL_CALL((SDDMMCsrKernel<Idx, DType, Op, UseBcast, UseIdx, LhsTarget, RhsTarget>),
365
        nblks, nthrs, 0, stream,
366
        lhs_data, rhs_data, out_data,
367
368
        indptr, indices, edge_map,
        N, M, E, reduce_dim,
369
        lhs_off, rhs_off,
370
        lhs_len, rhs_len, len);
371
372
373
  });
}

374

375
376
377
378
379
}  // namespace cuda
}  // namespace aten
}  // namespace dgl

#endif