README.md 6.28 KB
Newer Older
Minjie Wang's avatar
Minjie Wang committed
1
# Deep Graph Library (DGL)
Minjie Wang's avatar
Minjie Wang committed
2
[![Build Status](http://ci.dgl.ai:80/buildStatus/icon?job=DGL/master)](http://ci.dgl.ai:80/job/DGL/job/master/)
Minjie Wang's avatar
Minjie Wang committed
3
[![GitHub license](https://dmlc.github.io/img/apache2.svg)](./LICENSE)
zzhang-cn's avatar
zzhang-cn committed
4

Minjie Wang's avatar
Minjie Wang committed
5
6
7
[Documentation](https://docs.dgl.ai) | [DGL at a glance](https://docs.dgl.ai/tutorials/basics/1_first.html#sphx-glr-tutorials-basics-1-first-py) |
[Model Tutorials](https://docs.dgl.ai/tutorials/models/index.html) | [Discussion Forum](https://discuss.dgl.ai)

Gan Quan's avatar
Gan Quan committed
8
9
DGL is a Python package that interfaces between existing tensor libraries and data being expressed as
graphs.
Zheng Zhang's avatar
Zheng Zhang committed
10

Gan Quan's avatar
Gan Quan committed
11
12
It makes implementing graph neural networks (including Graph Convolution Networks, TreeLSTM, and many others) easy while
maintaining high computation efficiency.
13

Gan Quan's avatar
Gan Quan committed
14
A summary of the model accuracy and training speed with the Pytorch backend (on Amazon EC2 p3.2x instance (w/ V100 GPU)), as compared with the best open-source implementations:
15

Gan Quan's avatar
Gan Quan committed
16
17
18
19
20
21
22
23
24
| Model | Reported <br> Accuracy | DGL <br> Accuracy | Author's training speed (epoch time) | DGL speed (epoch time) | Improvement |
| ----- | ----------------- | ------------ | ------------------------------------ | ---------------------- | ----------- |
| [GCN](https://arxiv.org/abs/1609.02907)   | 81.5% | 81.0% | [0.0051s (TF)](https://github.com/tkipf/gcn) | 0.0042s | 1.17x |
| [TreeLSTM](http://arxiv.org/abs/1503.00075) | 51.0% | 51.72% | [14.02s (DyNet)](https://github.com/clab/dynet/tree/master/examples/treelstm) | 3.18s | 4.3x |
| [R-GCN <br> (classification)](https://arxiv.org/abs/1703.06103) | 73.23% | 73.53% | [0.2853s (Theano)](https://github.com/tkipf/relational-gcn) | 0.0273s | 10.4x |
| [R-GCN <br> (link prediction)](https://arxiv.org/abs/1703.06103) | 0.158 | 0.151 | [2.204s (TF)](https://github.com/MichSchli/RelationPrediction) | 0.633s | 3.5x |
| [JTNN](https://arxiv.org/abs/1802.04364) | 96.44% | 96.44% | [1826s (Pytorch)](https://github.com/wengong-jin/icml18-jtnn) | 743s | 2.5x |
| [LGNN](https://arxiv.org/abs/1705.08415) | 94% | 94% | n/a | 1.45s | n/a |
| [DGMG](https://arxiv.org/pdf/1803.03324.pdf) | 84% | 90% | n/a | 238s | n/a |
zzhang-cn's avatar
zzhang-cn committed
25

Da Zheng's avatar
Da Zheng committed
26
With the MXNet/Gluon backend , we scaled a graph of 50M nodes and 150M edges on a P3.8xlarge instance, 
Gan Quan's avatar
Gan Quan committed
27
28
with 160s per epoch, on SSE ([Stochastic Steady-state Embedding](https://www.cc.gatech.edu/~hdai8/pdf/equilibrium_embedding.pdf)), 
a model similar to GCN. 
zzhang-cn's avatar
zzhang-cn committed
29

Gan Quan's avatar
Gan Quan committed
30
31
32
33
34
35
36
37
38

We are currently in Beta stage.  More features and improvements are coming.

## System requirements

DGL should work on

* all Linux distributions no earlier than Ubuntu 16.04
* macOS X
39
* Windows 10
Gan Quan's avatar
Gan Quan committed
40
41
42

DGL also requires Python 3.5 or later.  Python 2 support is coming.

Lingfan Yu's avatar
Lingfan Yu committed
43
Right now, DGL works on [PyTorch](https://pytorch.org) 0.4.1+ and [MXNet](https://mxnet.apache.org) nightly
Gan Quan's avatar
Gan Quan committed
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
build.

## Installation

### Using anaconda

```
conda install -c dglteam dgl
```

### Using pip

```
pip install dgl
```

### From source

Refer to the guide [here](https://docs.dgl.ai/install/index.html#install-from-source).

## How DGL looks like

A graph can be constructed with feature tensors like this:

```python
import dgl
import torch as th

g = dgl.DGLGraph()
g.add_nodes(5)                          # add 5 nodes
g.add_edges([0, 0, 0, 0], [1, 2, 3, 4]) # add 4 edges 0->1, 0->2, 0->3, 0->4
g.ndata['h'] = th.randn(5, 3)           # assign one 3D vector to each node
g.edata['h'] = th.randn(4, 4)           # assign one 4D vector to each edge
```

This is *everything* to implement a single layer for Graph Convolutional Network on PyTorch:

```python
import dgl.function as fn
import torch.nn as nn
import torch.nn.functional as F
from dgl import DGLGraph

msg_func = fn.copy_src(src='h', out='m')
reduce_func = fn.sum(msg='m', out='h')

class GCNLayer(nn.Module):
    def __init__(self, in_feats, out_feats):
        super(GCNLayer, self).__init__()
        self.linear = nn.Linear(in_feats, out_feats)

    def apply(self, nodes):
        return {'h': F.relu(self.linear(nodes.data['h']))}

    def forward(self, g, feature):
        g.ndata['h'] = feature
        g.update_all(msg_func, reduce_func)
        g.apply_nodes(func=self.apply)
        return g.ndata.pop('h')
```

One can also customize how message and reduce function works.  The following code
demonstrates a (simplified version of) Graph Attention Network (GAT) layer:

```python
def msg_func(edges):
    return {'k': edges.src['k'], 'v': edges.src['v']}

def reduce_func(nodes):
    # nodes.data['q'] has the shape
    #     (number_of_nodes, feature_dims)
    # nodes.data['k'] and nodes.data['v'] have the shape
    #     (number_of_nodes, number_of_incoming_messages, feature_dims)
    # You only need to deal with the case where all nodes have the same number
    # of incoming messages.
    q = nodes.data['q'][:, None]
    k = nodes.mailbox['k']
    v = nodes.mailbox['v']
    s = F.softmax((q * k).sum(-1), 1)[:, :, None]
    return {'v': th.sum(s * v, 1)}

class GATLayer(nn.Module):
    def __init__(self, in_feats, out_feats):
        super(GATLayer, self).__init__()
        self.Q = nn.Linear(in_feats, out_feats)
        self.K = nn.Linear(in_feats, out_feats)
        self.V = nn.Linear(in_feats, out_feats)

    def apply(self, nodes):
        return {'v': F.relu(self.linear(nodes.data['v']))}

    def forward(self, g, feature):
        g.ndata['v'] = self.V(feature)
        g.ndata['q'] = self.Q(feature)
        g.ndata['k'] = self.K(feature)
        g.update_all(msg_func, reduce_func)
        g.apply_nodes(func=self.apply)
        return g.ndata['v']
```

For the basics of coding with DGL, please see [DGL basics](https://docs.dgl.ai/tutorials/basics/index.html).

For more realistic, end-to-end examples, please see [model tutorials](https://docs.dgl.ai/tutorials/models/index.html).

148
149
150
151
152
153

## New to Deep Learning?

Check out the open source book [*Dive into Deep Learning*](http://en.diveintodeeplearning.org/).


Gan Quan's avatar
Gan Quan committed
154
155
## Contributing

Lingfan Yu's avatar
Lingfan Yu committed
156
Please let us know if you encounter a bug or have any suggestions by [filing an issue](https://github.com/dmlc/dgl/issues).
Gan Quan's avatar
Gan Quan committed
157
158

We welcome all contributions from bug fixes to new features and extensions.
159
We expect all contributions discussed in the issue tracker and going through PRs.  Please refer to our [contribution guide](https://docs.dgl.ai/contribute.html).
Gan Quan's avatar
Gan Quan committed
160

161

Gan Quan's avatar
Gan Quan committed
162
163
## The Team

VoVAllen's avatar
VoVAllen committed
164
DGL is developed and maintained by [NYU, NYU Shanghai, AWS Shanghai AI Lab, and AWS MXNet Science Team](https://www.dgl.ai/pages/about.html).
Gan Quan's avatar
Gan Quan committed
165

166

Gan Quan's avatar
Gan Quan committed
167
168
169
## License

DGL uses Apache License 2.0.