train.py 4.72 KB
Newer Older
Aymen Waheb's avatar
Aymen Waheb committed
1
2
3
4
5
6
7
8
9
10
import argparse, time
import numpy as np
import torch
import torch.nn as nn
import torch.nn.functional as F
from dgl import DGLGraph
from dgl.data import register_data_args, load_data
import dgl
from appnp import APPNP

11

Aymen Waheb's avatar
Aymen Waheb committed
12
13
14
15
16
17
18
19
20
21
def evaluate(model, features, labels, mask):
    model.eval()
    with torch.no_grad():
        logits = model(features)
        logits = logits[mask]
        labels = labels[mask]
        _, indices = torch.max(logits, dim=1)
        correct = torch.sum(indices == labels)
        return correct.item() * 1.0 / len(labels)

22

Aymen Waheb's avatar
Aymen Waheb committed
23
24
25
26
27
def main(args):
    # load and preprocess dataset
    data = load_data(args)
    features = torch.FloatTensor(data.features)
    labels = torch.LongTensor(data.labels)
28
29
30
31
32
33
34
35
    if hasattr(torch, 'BoolTensor'):
        train_mask = torch.BoolTensor(data.train_mask)
        val_mask = torch.BoolTensor(data.val_mask)
        test_mask = torch.BoolTensor(data.test_mask)
    else:
        train_mask = torch.ByteTensor(data.train_mask)
        val_mask = torch.ByteTensor(data.val_mask)
        test_mask = torch.ByteTensor(data.test_mask)
Aymen Waheb's avatar
Aymen Waheb committed
36
37
38
39
40
41
42
43
44
45
    in_feats = features.shape[1]
    n_classes = data.num_labels
    n_edges = data.graph.number_of_edges()
    print("""----Data statistics------'
      #Edges %d
      #Classes %d
      #Train samples %d
      #Val samples %d
      #Test samples %d""" %
          (n_edges, n_classes,
46
47
48
           train_mask.sum().item(),
           val_mask.sum().item(),
           test_mask.sum().item()))
Aymen Waheb's avatar
Aymen Waheb committed
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81

    if args.gpu < 0:
        cuda = False
    else:
        cuda = True
        torch.cuda.set_device(args.gpu)
        features = features.cuda()
        labels = labels.cuda()
        train_mask = train_mask.cuda()
        val_mask = val_mask.cuda()
        test_mask = test_mask.cuda()

    # graph preprocess and calculate normalization factor
    g = DGLGraph(data.graph)
    n_edges = g.number_of_edges()
    # add self loop
    g.add_edges(g.nodes(), g.nodes())
    g.set_n_initializer(dgl.init.zero_initializer)
    g.set_e_initializer(dgl.init.zero_initializer)
    # normalization
    degs = g.in_degrees().float()
    norm = torch.pow(degs, -0.5)
    norm[torch.isinf(norm)] = 0
    if cuda:
        norm = norm.cuda()
    g.ndata['norm'] = norm.unsqueeze(1)

    # create APPNP model
    model = APPNP(g,
                  in_feats,
                  args.hidden_sizes,
                  n_classes,
                  F.relu,
82
83
                  args.in_drop,
                  args.edge_drop,
Aymen Waheb's avatar
Aymen Waheb committed
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
                  args.alpha,
                  args.k)

    if cuda:
        model.cuda()
    loss_fcn = torch.nn.CrossEntropyLoss()

    # use optimizer
    optimizer = torch.optim.Adam(model.parameters(),
                                 lr=args.lr,
                                 weight_decay=args.weight_decay)

    # initialize graph
    dur = []
    for epoch in range(args.n_epochs):
        model.train()
        if epoch >= 3:
            t0 = time.time()
        # forward
        logits = model(features)
        loss = loss_fcn(logits[train_mask], labels[train_mask])

        optimizer.zero_grad()
        loss.backward()
        optimizer.step()

        if epoch >= 3:
            dur.append(time.time() - t0)

        acc = evaluate(model, features, labels, val_mask)
        print("Epoch {:05d} | Time(s) {:.4f} | Loss {:.4f} | Accuracy {:.4f} | "
115
116
              "ETputs(KTEPS) {:.2f}".format(epoch, np.mean(dur), loss.item(),
                                            acc, n_edges / np.mean(dur) / 1000))
Aymen Waheb's avatar
Aymen Waheb committed
117
118
119
120
121
122
123
124
125

    print()
    acc = evaluate(model, features, labels, test_mask)
    print("Test Accuracy {:.4f}".format(acc))


if __name__ == '__main__':
    parser = argparse.ArgumentParser(description='APPNP')
    register_data_args(parser)
126
127
128
129
    parser.add_argument("--in-drop", type=float, default=0.5,
                        help="input feature dropout")
    parser.add_argument("--edge-drop", type=float, default=0.5,
                        help="edge propagation dropout")
Aymen Waheb's avatar
Aymen Waheb committed
130
    parser.add_argument("--gpu", type=int, default=-1,
131
                        help="gpu")
Aymen Waheb's avatar
Aymen Waheb committed
132
    parser.add_argument("--lr", type=float, default=1e-2,
133
                        help="learning rate")
Aymen Waheb's avatar
Aymen Waheb committed
134
    parser.add_argument("--n-epochs", type=int, default=200,
135
                        help="number of training epochs")
Aymen Waheb's avatar
Aymen Waheb committed
136
    parser.add_argument("--hidden_sizes", type=int, nargs='+', default=[64],
137
                        help="hidden unit sizes for appnp")
Aymen Waheb's avatar
Aymen Waheb committed
138
    parser.add_argument("--k", type=int, default=10,
139
                        help="Number of propagation steps")
Aymen Waheb's avatar
Aymen Waheb committed
140
    parser.add_argument("--alpha", type=float, default=0.1,
141
                        help="Teleport Probability")
Aymen Waheb's avatar
Aymen Waheb committed
142
    parser.add_argument("--weight-decay", type=float, default=5e-4,
143
                        help="Weight for L2 loss")
Aymen Waheb's avatar
Aymen Waheb committed
144
145
146
147
    args = parser.parse_args()
    print(args)

    main(args)