semisupervised.py 8.92 KB
Newer Older
1
2
3
4
5
6
import numpy as np
import torch as th
import torch.nn.functional as F
import dgl
from dgl.dataloading import GraphDataLoader
from dgl.data.utils import Subset
7
from dgl.data import QM9EdgeDataset
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
from model import InfoGraphS
import argparse


def argument():
    parser = argparse.ArgumentParser(description='InfoGraphS')

    # data source params
    parser.add_argument('--target', type=str, default='mu', help='Choose regression task')
    parser.add_argument('--train_num', type=int, default=5000, help='Size of training set')

    # training params
    parser.add_argument('--gpu', type=int, default=-1, help='GPU index, default:-1, using CPU.')
    parser.add_argument('--epochs', type=int, default=200, help='Training epochs.')
    parser.add_argument('--batch_size', type=int, default=20, help='Training batch size.')
    parser.add_argument('--val_batch_size', type=int, default=100, help='Validation batch size.')

    parser.add_argument('--lr', type=float, default=0.001, help='Learning rate.')
    parser.add_argument('--wd', type=float, default=0, help='Weight decay.')

    # model params
    parser.add_argument('--hid_dim', type=int, default=64, help='Hidden layer dimensionality')
    parser.add_argument('--reg', type=float, default=0.001, help='Regularization coefficient')

    args = parser.parse_args()

    # check cuda
    if args.gpu != -1 and th.cuda.is_available():
        args.device = 'cuda:{}'.format(args.gpu)
    else:
        args.device = 'cpu'

    return args

42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
class DenseQM9EdgeDataset(QM9EdgeDataset):
    def __getitem__(self, idx):
        r""" Get graph and label by index 
        
        Parameters
        ----------
        idx : int
            Item index
            
        Returns
        -------
        dgl.DGLGraph
           The graph contains:
           
           - ``ndata['pos']``: the coordinates of each atom
           - ``ndata['attr']``: the features of each atom
           - ``edata['edge_attr']``: the features of each bond
           
        Tensor
            Property values of molecular graphs
        """
        
        pos = self.node_pos[self.n_cumsum[idx]:self.n_cumsum[idx+1]]
        src = self.src[self.ne_cumsum[idx]:self.ne_cumsum[idx+1]]
        dst = self.dst[self.ne_cumsum[idx]:self.ne_cumsum[idx+1]]

        g = dgl.graph((src, dst))
          
        g.ndata['pos'] = th.tensor(pos).float()
        g.ndata['attr'] = th.tensor(self.node_attr[self.n_cumsum[idx]:self.n_cumsum[idx+1]]).float()
        g.edata['edge_attr'] = th.tensor(self.edge_attr[self.ne_cumsum[idx]:self.ne_cumsum[idx+1]]).float()
        
        
        label = th.tensor(self.targets[idx][self.label_keys]).float()
    
        n_nodes = g.num_nodes()
        row = th.arange(n_nodes)
        col = th.arange(n_nodes)

        row = row.view(-1,1).repeat(1, n_nodes).view(-1)
        col = col.repeat(n_nodes)

        src = g.edges()[0]
        dst = g.edges()[1]

        idx = src * n_nodes + dst
        size = list(g.edata['edge_attr'].size())
        size[0] = n_nodes * n_nodes
        edge_attr = g.edata['edge_attr'].new_zeros(size)

        edge_attr[idx] = g.edata['edge_attr']

        pos = g.ndata['pos']
        dist = th.norm(pos[col] - pos[row], p=2, dim=-1).view(-1, 1)

        new_edge_attr =  th.cat([edge_attr, dist.type_as(edge_attr)], dim = -1)

        graph = dgl.graph((row,col))
        graph.ndata['attr'] = g.ndata['attr']
        graph.edata['edge_attr'] = new_edge_attr
        graph = graph.remove_self_loop()
        
        return graph, label
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141

def collate(samples):
    ''' collate function for building graph dataloader '''

    # generate batched graphs and labels
    graphs, targets = map(list, zip(*samples))
    batched_graph = dgl.batch(graphs)
    batched_targets = th.Tensor(targets)
    
    n_graphs = len(graphs)
    graph_id = th.arange(n_graphs)
    graph_id = dgl.broadcast_nodes(batched_graph, graph_id)
    
    batched_graph.ndata['graph_id'] = graph_id
    
    return batched_graph, batched_targets

def evaluate(model, loader, num, device):
    error = 0
    for graphs, targets in loader:
        graphs = graphs.to(device) 
            
        nfeat, efeat = graphs.ndata['attr'], graphs.edata['edge_attr']
        targets = targets.to(device)
        error += (model(graphs, nfeat, efeat) - targets).abs().sum().item()

    error = error / num
    
    return error

if __name__ == '__main__':

    # Step 1: Prepare graph data   ===================================== #
    args = argument()
    label_keys = [args.target]
    print(args)

142
143
    dataset = DenseQM9EdgeDataset(label_keys = label_keys)
    
144
    # Train/Val/Test Splitting
145
    N = dataset.targets.shape[0]
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
    all_idx = np.arange(N)
    np.random.shuffle(all_idx)

    val_num = 10000
    test_num = 10000

    val_idx = all_idx[:val_num]
    test_idx = all_idx[val_num : val_num + test_num]
    train_idx = all_idx[val_num + test_num : val_num + test_num + args.train_num]

    train_data = Subset(dataset, train_idx)
    val_data = Subset(dataset, val_idx)
    test_data = Subset(dataset, test_idx)

    unsup_idx = all_idx[val_num + test_num:]
    unsup_data = Subset(dataset, unsup_idx)

    # generate supervised training dataloader and unsupervised training dataloader
    train_loader = GraphDataLoader(train_data,
                                   batch_size=args.batch_size,
                                   collate_fn=collate,
                                   drop_last=False,
                                   shuffle=True)

    unsup_loader = GraphDataLoader(unsup_data,
                                   batch_size=args.batch_size,
                                   collate_fn=collate,
                                   drop_last=False,
                                   shuffle=True)

    # generate validation & testing dataloader
    val_loader = GraphDataLoader(val_data,
                                 batch_size=args.val_batch_size,
                                 collate_fn=collate,
                                 drop_last=False,
                                 shuffle=True)

    test_loader = GraphDataLoader(test_data,
                                  batch_size=args.val_batch_size,
                                  collate_fn=collate,
                                  drop_last=False,
                                  shuffle=True)

    print('======== target = {} ========'.format(args.target))

    in_dim = dataset[0][0].ndata['attr'].shape[1]

    # Step 2: Create model =================================================================== #
    model = InfoGraphS(in_dim, args.hid_dim)
    model = model.to(args.device)

    # Step 3: Create training components ===================================================== #
    optimizer = th.optim.Adam(model.parameters(), lr=args.lr, weight_decay=args.wd)
    scheduler = th.optim.lr_scheduler.ReduceLROnPlateau(
        optimizer, mode='min', factor=0.7, patience=5, min_lr=0.000001
    )

    # Step 4: training epochs =============================================================== #
    best_val_error = float('inf')
    test_error = float('inf')
    
    for epoch in range(args.epochs):
        ''' Training '''
        model.train()
        lr = scheduler.optimizer.param_groups[0]['lr']

        iteration = 0
        sup_loss_all = 0
        unsup_loss_all = 0
        consis_loss_all = 0

        for sup_data, unsup_data in zip(train_loader, unsup_loader):
            sup_graph, sup_target = sup_data
            unsup_graph, _ = unsup_data

            sup_graph = sup_graph.to(args.device)
            unsup_graph = unsup_graph.to(args.device)
            
224
            sup_nfeat, sup_efeat = sup_graph.ndata['attr'], sup_graph.edata['edge_attr']
225
            unsup_nfeat, unsup_efeat, unsup_graph_id = unsup_graph.ndata['attr'],\
226
                                                       unsup_graph.edata['edge_attr'], unsup_graph.ndata['graph_id']
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259

            sup_target = sup_target
            sup_target = sup_target.to(args.device)

            optimizer.zero_grad()

            sup_loss = F.mse_loss(model(sup_graph, sup_nfeat, sup_efeat), sup_target)
            unsup_loss, consis_loss = model.unsup_forward(unsup_graph, unsup_nfeat, unsup_efeat, unsup_graph_id)

            loss = sup_loss + unsup_loss + args.reg * consis_loss

            loss.backward()

            sup_loss_all += sup_loss.item()
            unsup_loss_all += unsup_loss.item()
            consis_loss_all += consis_loss.item()

            optimizer.step()

        print('Epoch: {}, Sup_Loss: {:4f}, Unsup_loss: {:.4f}, Consis_loss: {:.4f}' \
                .format(epoch, sup_loss_all, unsup_loss_all, consis_loss_all))

        model.eval()

        val_error = evaluate(model, val_loader, val_num, args.device)
        scheduler.step(val_error)
        
        if val_error < best_val_error:
            best_val_error = val_error
            test_error = evaluate(model, test_loader, test_num, args.device)

        print('Epoch: {}, LR: {}, val_error: {:.4f}, best_test_error: {:.4f}' \
            .format(epoch, lr, val_error, test_error))