"...pytorch/graphsage/advanced/train_sampling_unsupervised.py" did not exist on "dcf464121bb3a2db92b62726073baa1fb574c406"
misc.py 2.3 KB
Newer Older
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
#!/usr/bin/env python
# -*- coding: utf-8 -*-
"""
This file re-uses implementation from https://github.com/yl-1993/learn-to-cluster
"""

import os
import time
import json
import pickle
import random
import numpy as np

class TextColors:
    HEADER = '\033[35m'
    OKBLUE = '\033[34m'
    OKGREEN = '\033[32m'
    WARNING = '\033[33m'
    FATAL = '\033[31m'
    ENDC = '\033[0m'
    BOLD = '\033[1m'
    UNDERLINE = '\033[4m'

class Timer():
    def __init__(self, name='task', verbose=True):
        self.name = name
        self.verbose = verbose

    def __enter__(self):
        self.start = time.time()
        return self

    def __exit__(self, exc_type, exc_val, exc_tb):
        if self.verbose:
            print('[Time] {} consumes {:.4f} s'.format(
                self.name,
                time.time() - self.start))
        return exc_type is None

def set_random_seed(seed, cuda=False):
    import torch
    random.seed(seed)
    np.random.seed(seed)
    torch.manual_seed(seed)
    if cuda:
        torch.cuda.manual_seed_all(seed)

def l2norm(vec):
    vec /= np.linalg.norm(vec, axis=1).reshape(-1, 1)
    return vec

def is_l2norm(features, size):
    rand_i = random.choice(range(size))
    norm_ = np.dot(features[rand_i, :], features[rand_i, :])
    return abs(norm_ - 1) < 1e-6

def is_spmat_eq(a, b):
    return (a != b).nnz == 0

def aggregate(features, adj, times):
    dtype = features.dtype
    for i in range(times):
        features = adj * features
    return features.astype(dtype)

def mkdir_if_no_exists(path, subdirs=[''], is_folder=False):
    if path == '':
        return
    for sd in subdirs:
        if sd != '' or is_folder:
            d = os.path.dirname(os.path.join(path, sd))
        else:
            d = os.path.dirname(path)
        if not os.path.exists(d):
            os.makedirs(d)

def stop_iterating(current_l, total_l, early_stop, num_edges_add_this_level, num_edges_add_last_level, knn_k):
    # Stopping rule 1: run all levels
    if current_l == total_l - 1:
        return True
    # Stopping rule 2: no new edges
    if num_edges_add_this_level == 0:
        return True
    # Stopping rule 3: early stopping, two levels start to produce similar numbers of edges
    if early_stop and float(num_edges_add_last_level) / num_edges_add_this_level < knn_k - 1:
        return True
    return False