test.py 3.99 KB
Newer Older
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
import argparse, time, os, pickle
import numpy as np

import dgl
import torch
import torch.optim as optim

from models import LANDER
from dataset import LanderDataset
from utils import evaluation, decode, build_next_level, stop_iterating

###########
# ArgParser
parser = argparse.ArgumentParser()

# Dataset
parser.add_argument('--data_path', type=str, required=True)
parser.add_argument('--model_filename', type=str, default='lander.pth')
parser.add_argument('--faiss_gpu', action='store_true')
parser.add_argument('--early_stop', action='store_true')

# HyperParam
parser.add_argument('--knn_k', type=int, default=10)
parser.add_argument('--levels', type=int, default=1)
parser.add_argument('--tau', type=float, default=0.5)
parser.add_argument('--threshold', type=str, default='prob')
parser.add_argument('--metrics', type=str, default='pairwise,bcubed,nmi')

# Model
parser.add_argument('--hidden', type=int, default=512)
parser.add_argument('--num_conv', type=int, default=4)
parser.add_argument('--dropout', type=float, default=0.)
parser.add_argument('--gat', action='store_true')
parser.add_argument('--gat_k', type=int, default=1)
parser.add_argument('--balance', action='store_true')
parser.add_argument('--use_cluster_feat', action='store_true')
parser.add_argument('--use_focal_loss', action='store_true')
parser.add_argument('--use_gt', action='store_true')

args = parser.parse_args()

###########################
# Environment Configuration
if torch.cuda.is_available():
    device = torch.device('cuda')
else:
    device = torch.device('cpu')

##################
# Data Preparation
with open(args.data_path, 'rb') as f:
    features, labels = pickle.load(f)
global_features = features.copy()
dataset = LanderDataset(features=features, labels=labels, k=args.knn_k,
                        levels=1, faiss_gpu=args.faiss_gpu)
g = dataset.gs[0].to(device)
global_labels = labels.copy()
ids = np.arange(g.number_of_nodes())
global_edges = ([], [])
global_edges_len = len(global_edges[0])
global_num_nodes = g.number_of_nodes()

##################
# Model Definition
if not args.use_gt:
    feature_dim = g.ndata['features'].shape[1]
    model = LANDER(feature_dim=feature_dim, nhid=args.hidden,
                   num_conv=args.num_conv, dropout=args.dropout,
                   use_GAT=args.gat, K=args.gat_k,
                   balance=args.balance,
                   use_cluster_feat=args.use_cluster_feat,
                   use_focal_loss=args.use_focal_loss)
    model.load_state_dict(torch.load(args.model_filename))
    model = model.to(device)
    model.eval()

# number of edges added is the indicator for early stopping
num_edges_add_last_level = np.Inf
##################################
# Predict connectivity and density
for level in range(args.levels):
    if not args.use_gt:
        with torch.no_grad():
            g = model(g)
    new_pred_labels, peaks,\
        global_edges, global_pred_labels, global_peaks = decode(g, args.tau, args.threshold, args.use_gt,
                                                                ids, global_edges, global_num_nodes)
    ids = ids[peaks]
    new_global_edges_len = len(global_edges[0])
    num_edges_add_this_level = new_global_edges_len - global_edges_len
    if stop_iterating(level, args.levels, args.early_stop, num_edges_add_this_level, num_edges_add_last_level, args.knn_k):
        break
    global_edges_len = new_global_edges_len
    num_edges_add_last_level = num_edges_add_this_level

    # build new dataset
    features, labels, cluster_features = build_next_level(features, labels, peaks,
                                                          global_features, global_pred_labels, global_peaks)
    # After the first level, the number of nodes reduce a lot. Using cpu faiss is faster.
    dataset = LanderDataset(features=features, labels=labels, k=args.knn_k,
                            levels=1, faiss_gpu=False, cluster_features = cluster_features)
    if len(dataset.gs) == 0:
        break
    g = dataset.gs[0].to(device)
evaluation(global_pred_labels, global_labels, args.metrics)