graphwriter.py 10.3 KB
Newer Older
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
import torch
from modules import MSA, BiLSTM, GraphTrans  
from utlis import *
from torch import nn
import dgl
            

class GraphWriter(nn.Module):
    def __init__(self, args):
        super(GraphWriter, self).__init__()
        self.args = args
        if args.title:
            self.title_emb = nn.Embedding(len(args.title_vocab), args.nhid, padding_idx=0)
            self.title_enc = BiLSTM(args, enc_type='title')
            self.title_attn = MSA(args)
        self.ent_emb = nn.Embedding(len(args.ent_text_vocab), args.nhid, padding_idx=0)
        self.tar_emb = nn.Embedding(len(args.text_vocab), args.nhid, padding_idx=0)
        if args.title:
            nn.init.xavier_normal_(self.title_emb.weight)
        nn.init.xavier_normal_(self.ent_emb.weight)
        self.rel_emb = nn.Embedding(len(args.rel_vocab), args.nhid, padding_idx=0)
        nn.init.xavier_normal_(self.rel_emb.weight)
        self.decode_lstm = nn.LSTMCell(args.dec_ninp, args.nhid)
        self.ent_enc = BiLSTM(args, enc_type='entity')
        self.graph_enc = GraphTrans(args)
        self.ent_attn = MSA(args)
        self.copy_attn = MSA(args, mode='copy')
        self.copy_fc = nn.Linear(args.dec_ninp, 1)
        self.pred_v_fc = nn.Linear(args.dec_ninp, len(args.text_vocab))

    def enc_forward(self, batch, ent_mask, ent_text_mask, ent_len, rel_mask, title_mask):
        title_enc = None
        if self.args.title:
            title_enc = self.title_enc(self.title_emb(batch['title']), title_mask)
        ent_enc = self.ent_enc(self.ent_emb(batch['ent_text']), ent_text_mask, ent_len = batch['ent_len'])
        rel_emb = self.rel_emb(batch['rel'])
        g_ent, g_root = self.graph_enc(ent_enc, ent_mask, ent_len, rel_emb, rel_mask, batch['graph'])
        return g_ent, g_root, title_enc, ent_enc 

    def forward(self, batch, beam_size=-1):
        ent_mask = len2mask(batch['ent_len'], self.args.device)
        ent_text_mask = batch['ent_text']==0
        rel_mask = batch['rel']==0 # 0 means the <PAD>
        title_mask = batch['title']==0
        g_ent, g_root, title_enc, ent_enc = self.enc_forward(batch, ent_mask, ent_text_mask, batch['ent_len'], rel_mask, title_mask)

        _h, _c = g_root, g_root.clone().detach()
        ctx = _h + self.ent_attn(_h, g_ent, mask=ent_mask)
        if self.args.title:
            attn = _h + self.title_attn(_h, title_enc, mask=title_mask)
            ctx = torch.cat([ctx, attn], 1)
        if beam_size<1:
            # training
            outs = []
            tar_inp = self.tar_emb(batch['text'].transpose(0,1))
            for t, xt in enumerate(tar_inp):
                _xt = torch.cat([ctx, xt], 1)
                _h, _c = self.decode_lstm(_xt, (_h, _c))
                ctx = _h + self.ent_attn(_h, g_ent, mask=ent_mask)
                if self.args.title:
                    attn = _h + self.title_attn(_h, title_enc, mask=title_mask)
                    ctx = torch.cat([ctx, attn], 1)
                outs.append(torch.cat([_h, ctx], 1)) 
            outs = torch.stack(outs, 1)
            copy_gate = torch.sigmoid(self.copy_fc(outs))
            EPSI = 1e-6
            # copy
            pred_v = torch.log(copy_gate+EPSI) + torch.log_softmax(self.pred_v_fc(outs), -1)
            pred_c = torch.log((1. - copy_gate)+EPSI) + torch.log_softmax(self.copy_attn(outs, ent_enc, mask=ent_mask), -1)
            pred = torch.cat([pred_v, pred_c], -1)
            return pred
        else:
            if beam_size==1:
                # greedy
                device = g_ent.device
                B = g_ent.shape[0]
                ent_type = batch['ent_type'].view(B, -1)
                seq = (torch.ones(B,).long().to(device) * self.args.text_vocab('<BOS>')).unsqueeze(1)
                for t in range(self.args.beam_max_len):
                    _inp = replace_ent(seq[:,-1], ent_type, len(self.args.text_vocab))
                    xt = self.tar_emb(_inp)
                    _xt = torch.cat([ctx, xt], 1)
                    _h, _c = self.decode_lstm(_xt, (_h, _c))
                    ctx = _h + self.ent_attn(_h, g_ent, mask=ent_mask)
                    if self.args.title:
                        attn = _h + self.title_attn(_h, title_enc, mask=title_mask)
                        ctx = torch.cat([ctx, attn], 1)
                    _y = torch.cat([_h, ctx], 1)
                    copy_gate = torch.sigmoid(self.copy_fc(_y))
                    pred_v = torch.log(copy_gate) + torch.log_softmax(self.pred_v_fc(_y), -1)
                    pred_c = torch.log((1. - copy_gate)) + torch.log_softmax(self.copy_attn(_y.unsqueeze(1), ent_enc, mask=ent_mask).squeeze(1), -1)
                    pred = torch.cat([pred_v, pred_c], -1).view(B,-1)
                    for ban_item in ['<BOS>', '<PAD>', '<UNK>']:
                        pred[:, self.args.text_vocab(ban_item)] = -1e8
                    _, word = pred.max(-1)
                    seq = torch.cat([seq, word.unsqueeze(1)], 1)
                return seq
            else:
                # beam search
                device = g_ent.device
                B = g_ent.shape[0]
                BSZ = B * beam_size
                _h = _h.view(B, 1, -1).repeat(1, beam_size, 1).view(BSZ, -1)
                _c = _c.view(B, 1, -1).repeat(1, beam_size, 1).view(BSZ, -1)
                ent_mask = ent_mask.view(B, 1, -1).repeat(1, beam_size, 1).view(BSZ, -1)
                if self.args.title:
                    title_mask = title_mask.view(B, 1, -1).repeat(1, beam_size, 1).view(BSZ, -1)
                    title_enc = title_enc.view(B, 1, title_enc.size(1), -1).repeat(1, beam_size, 1, 1).view(BSZ, title_enc.size(1), -1)
                ctx = ctx.view(B, 1, -1).repeat(1, beam_size, 1).view(BSZ, -1)
                ent_type = batch['ent_type'].view(B, 1, -1).repeat(1, beam_size, 1).view(BSZ, -1)
                g_ent = g_ent.view(B, 1, g_ent.size(1), -1).repeat(1, beam_size, 1, 1).view(BSZ, g_ent.size(1), -1)
                ent_enc = ent_enc.view(B, 1, ent_enc.size(1), -1).repeat(1, beam_size, 1, 1).view(BSZ, ent_enc.size(1), -1)

                beam_best = torch.zeros(B).to(device) - 1e9
                beam_best_seq = [None] * B 
                beam_seq = (torch.ones(B, beam_size).long().to(device) * self.args.text_vocab('<BOS>')).unsqueeze(-1)
                beam_score = torch.zeros(B, beam_size).to(device)
                done_flag = torch.zeros(B, beam_size)
                for t in range(self.args.beam_max_len):
                    _inp = replace_ent(beam_seq[:,:,-1].view(-1), ent_type, len(self.args.text_vocab))
                    xt = self.tar_emb(_inp)
                    _xt = torch.cat([ctx, xt], 1)
                    _h, _c = self.decode_lstm(_xt, (_h, _c))
                    ctx = _h + self.ent_attn(_h, g_ent, mask=ent_mask)
                    if self.args.title:
                        attn = _h + self.title_attn(_h, title_enc, mask=title_mask)
                        ctx = torch.cat([ctx, attn], 1)
                    _y = torch.cat([_h, ctx], 1)
                    copy_gate = torch.sigmoid(self.copy_fc(_y))
                    pred_v = torch.log(copy_gate) + torch.log_softmax(self.pred_v_fc(_y), -1)
                    pred_c = torch.log((1. - copy_gate)) + torch.log_softmax(self.copy_attn(_y.unsqueeze(1), ent_enc, mask=ent_mask).squeeze(1), -1)
                    pred = torch.cat([pred_v, pred_c], -1).view(B, beam_size, -1)
                    for ban_item in ['<BOS>', '<PAD>', '<UNK>']:
                        pred[:, :, self.args.text_vocab(ban_item)] = -1e8
                    if t==self.args.beam_max_len-1: # force ending 
                        tt = pred[:, :, self.args.text_vocab('<EOS>')]
                        pred = pred*0-1e8
                        pred[:, :, self.args.text_vocab('<EOS>')] = tt
                    cum_score = beam_score.view(B,beam_size,1) + pred
                    score, word = cum_score.topk(dim=-1, k=beam_size) # B, beam_size, beam_size
                    score, word = score.view(B,-1), word.view(B,-1)
                    eos_idx = self.args.text_vocab('<EOS>')
                    if beam_seq.size(2)==1:
                        new_idx = torch.arange(beam_size).to(word)
                        new_idx = new_idx[None,:].repeat(B,1)
                    else:
                        _, new_idx = score.topk(dim=-1, k=beam_size)
                    new_src, new_score, new_word, new_done = [], [], [], []
                    LP = beam_seq.size(2) ** self.args.lp
                    for i in range(B):
                        for j in range(beam_size):
                            tmp_score = score[i][new_idx[i][j]]
                            tmp_word = word[i][new_idx[i][j]]
                            src_idx = new_idx[i][j]//beam_size
                            new_src.append(src_idx)
                            if tmp_word == eos_idx:
                                new_score.append(-1e8)
                            else:
                                new_score.append(tmp_score)
                            new_word.append(tmp_word)

                            if tmp_word == eos_idx and done_flag[i][src_idx]==0 and tmp_score/LP>beam_best[i]:
                                beam_best[i] = tmp_score/LP
                                beam_best_seq[i] = beam_seq[i][src_idx]
                            if tmp_word == eos_idx:
                                new_done.append(1)
                            else:
                                new_done.append(done_flag[i][src_idx])
                    new_score = torch.Tensor(new_score).view(B,beam_size).to(beam_score)
                    new_word = torch.Tensor(new_word).view(B,beam_size).to(beam_seq)
                    new_src = torch.LongTensor(new_src).view(B,beam_size).to(device)
                    new_done = torch.Tensor(new_done).view(B,beam_size).to(done_flag)
                    beam_score = new_score
                    done_flag = new_done
                    beam_seq = beam_seq.view(B,beam_size,-1)[torch.arange(B)[:,None].to(device), new_src]
                    beam_seq = torch.cat([beam_seq, new_word.unsqueeze(2)], 2)
                    _h = _h.view(B,beam_size,-1)[torch.arange(B)[:,None].to(device), new_src].view(BSZ,-1)
                    _c = _c.view(B,beam_size,-1)[torch.arange(B)[:,None].to(device), new_src].view(BSZ,-1)
                    ctx = ctx.view(B,beam_size,-1)[torch.arange(B)[:,None].to(device), new_src].view(BSZ,-1)

                return beam_best_seq