train.py 6.86 KB
Newer Older
Chen Sirui's avatar
Chen Sirui committed
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
import time
import argparse
import traceback

import numpy as np
import torch
from torch.utils.data import DataLoader
import networkx as nx
import dgl

from models import MLP, InteractionNet, PrepareLayer
from dataloader import MultiBodyGraphCollator, MultiBodyTrainDataset,\
    MultiBodyValidDataset, MultiBodyTestDataset

from utils import make_video

def train(optimizer, loss_fn,reg_fn, model, prep, dataloader, lambda_reg, device):
    total_loss = 0
    model.train()
    for i, (graph_batch, data_batch, label_batch) in enumerate(dataloader):
        graph_batch = graph_batch.to(device)
        data_batch = data_batch.to(device)
        label_batch = label_batch.to(device)
        optimizer.zero_grad()
        node_feat, edge_feat = prep(graph_batch, data_batch)
        dummy_relation = torch.zeros(edge_feat.shape[0], 1).float().to(device)
        dummy_global = torch.zeros(node_feat.shape[0], 1).float().to(device)
        v_pred, out_e = model(graph_batch, node_feat[:, 3:5].float(
        ), edge_feat.float(), dummy_global, dummy_relation)
        loss = loss_fn(v_pred, label_batch)
        total_loss += float(loss)
        zero_target = torch.zeros_like(out_e)
        loss = loss + lambda_reg*reg_fn(out_e, zero_target)
        reg_loss = 0
        for param in model.parameters():
            reg_loss = reg_loss + lambda_reg * \
                reg_fn(param, torch.zeros_like(
                    param).float().to(device))
        loss = loss + reg_loss
        loss.backward()
        optimizer.step()
    return total_loss/(i+1)

# One step evaluation


def eval(loss_fn, model, prep, dataloader, device):
    total_loss = 0
    model.eval()
    for i, (graph_batch, data_batch, label_batch) in enumerate(dataloader):
        graph_batch = graph_batch.to(device)
        data_batch = data_batch.to(device)
        label_batch = label_batch.to(device)
        node_feat, edge_feat = prep(graph_batch, data_batch)
        dummy_relation = torch.zeros(
            edge_feat.shape[0], 1).float().to(device)
        dummy_global = torch.zeros(
            node_feat.shape[0], 1).float().to(device)
        v_pred, _ = model(graph_batch, node_feat[:, 3:5].float(
        ), edge_feat.float(), dummy_global, dummy_relation)
        loss = loss_fn(v_pred, label_batch)
        total_loss += float(loss)
    return total_loss/(i+1)

# Rollout Evaluation based in initial state
# Need to integrate


def eval_rollout(model, prep, initial_frame, n_object, device):
    current_frame = initial_frame.to(device)
    base_graph = nx.complete_graph(n_object)
    graph = dgl.from_networkx(base_graph).to(device)
    pos_buffer = []
    model.eval()
    for step in range(100):
        node_feats, edge_feats = prep(graph, current_frame)
        dummy_relation = torch.zeros(
            edge_feats.shape[0], 1).float().to(device)
        dummy_global = torch.zeros(
            node_feats.shape[0], 1).float().to(device)
        v_pred, _ = model(graph, node_feats[:, 3:5].float(
        ), edge_feats.float(), dummy_global, dummy_relation)
        current_frame[:, [1, 2]] += v_pred*0.001
        current_frame[:, 3:5] = v_pred
        pos_buffer.append(current_frame[:, [1, 2]].cpu().numpy())
    pos_buffer = np.vstack(pos_buffer).reshape(100, n_object, -1)
    make_video(pos_buffer, 'video_model.mp4')


if __name__ == '__main__':
    argparser = argparse.ArgumentParser()
    argparser.add_argument('--lr', type=float, default=0.001,
                           help='learning rate')
    argparser.add_argument('--epochs', type=int, default=40000,
                           help='Number of epochs in training')
    argparser.add_argument('--lambda_reg', type=float, default=0.001,
                           help='regularization weight')
    argparser.add_argument('--gpu', type=int, default=-1,
                           help='gpu device code, -1 means cpu')
    argparser.add_argument('--batch_size', type=int, default=100,
                           help='size of each mini batch')
    argparser.add_argument('--num_workers', type=int, default=0,
                           help='number of workers for dataloading')
    argparser.add_argument('--visualize', action='store_true', default=False,
                           help='Whether enable trajectory rollout mode for visualization')
    args = argparser.parse_args()

    # Select Device to be CPU or GPU
    if args.gpu != -1:
        device = torch.device('cuda:{}'.format(args.gpu))
    else:
        device = torch.device('cpu')

    train_data = MultiBodyTrainDataset()
    valid_data = MultiBodyValidDataset()
    test_data = MultiBodyTestDataset()
    collator = MultiBodyGraphCollator(train_data.n_particles)

    train_dataloader = DataLoader(
        train_data, args.batch_size, True, collate_fn=collator, num_workers=args.num_workers)
    valid_dataloader = DataLoader(
        valid_data, args.batch_size, True, collate_fn=collator, num_workers=args.num_workers)
    test_full_dataloader = DataLoader(
        test_data, args.batch_size, True, collate_fn=collator, num_workers=args.num_workers)

    node_feats = 5
    stat = {'median': torch.from_numpy(train_data.stat_median).to(device),
            'max': torch.from_numpy(train_data.stat_max).to(device),
            'min': torch.from_numpy(train_data.stat_min).to(device)}
    print("Weight: ", train_data.stat_median[0],
          train_data.stat_max[0], train_data.stat_min[0])
    print("Position: ", train_data.stat_median[[
          1, 2]], train_data.stat_max[[1, 2]], train_data.stat_min[[1, 2]])
    print("Velocity: ", train_data.stat_median[[
          3, 4]], train_data.stat_max[[3, 4]], train_data.stat_min[[3, 4]])

    prepare_layer = PrepareLayer(node_feats, stat).to(device)
    interaction_net = InteractionNet(node_feats, stat).to(device)
    print(interaction_net)
    optimizer = torch.optim.Adam(interaction_net.parameters(), lr=args.lr)
    state_dict = interaction_net.state_dict()

    loss_fn = torch.nn.MSELoss()
    reg_fn = torch.nn.MSELoss(reduction='sum')
    try:
        for e in range(args.epochs):
            last_t = time.time()
            loss = train(optimizer, loss_fn,reg_fn, interaction_net,
                         prepare_layer, train_dataloader, args.lambda_reg, device)
            print("Epoch time: ", time.time()-last_t)
            if e % 1 == 0:
                valid_loss = eval(loss_fn, interaction_net,
                                  prepare_layer, valid_dataloader, device)
                test_full_loss = eval(
                    loss_fn, interaction_net, prepare_layer, test_full_dataloader, device)
                print("Epoch: {}.Loss: Valid: {} Full: {}".format(
                    e, valid_loss, test_full_loss))
    except:
        traceback.print_exc()
    finally:
        if args.visualize:
            eval_rollout(interaction_net, prepare_layer,
                         test_data.first_frame, test_data.n_particles, device)
            make_video(test_data.test_traj[:100, :, [1, 2]], 'video_truth.mp4')