train_dist_transductive.py 13.8 KB
Newer Older
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
import os
os.environ['DGLBACKEND']='pytorch'
from multiprocessing import Process
import argparse, time, math
import numpy as np
from functools import wraps
import tqdm

import dgl
from dgl import DGLGraph
from dgl.data import register_data_args, load_data
from dgl.data.utils import load_graphs
import dgl.function as fn
import dgl.nn.pytorch as dglnn
from dgl.distributed import DistDataLoader
from dgl.distributed.nn import NodeEmbedding

import torch as th
import torch.nn as nn
import torch.nn.functional as F
import torch.optim as optim
import torch.multiprocessing as mp
from torch.utils.data import DataLoader

from train_dist import DistSAGE, NeighborSampler, compute_acc

class TransDistSAGE(DistSAGE):
    def __init__(self, in_feats, n_hidden, n_classes, n_layers,
                 activation, dropout):
        super(TransDistSAGE, self).__init__(in_feats, n_hidden, n_classes, n_layers, activation, dropout)

    def inference(self, standalone, g, x, batch_size, device):
        """
        Inference with the GraphSAGE model on full neighbors (i.e. without neighbor sampling).
        g : the entire graph.
        x : the input of entire node set.

        The inference code is written in a fashion that it could handle any number of nodes and
        layers.
        """
        # During inference with sampling, multi-layer blocks are very inefficient because
        # lots of computations in the first few layers are repeated.
        # Therefore, we compute the representation of all nodes layer by layer.  The nodes
        # on each layer are of course splitted in batches.
        # TODO: can we standardize this?
        nodes = dgl.distributed.node_split(np.arange(g.number_of_nodes()),
                                           g.get_partition_book(), force_even=True)
        y = dgl.distributed.DistTensor((g.number_of_nodes(), self.n_hidden), th.float32, 'h',
                                       persistent=True)
        for l, layer in enumerate(self.layers):
            if l == len(self.layers) - 1:
                y = dgl.distributed.DistTensor((g.number_of_nodes(), self.n_classes),
                                               th.float32, 'h_last', persistent=True)

            sampler = NeighborSampler(g, [-1], dgl.distributed.sample_neighbors, device, load_feat=False)
            print('|V|={}, eval batch size: {}'.format(g.number_of_nodes(), batch_size))
            # Create PyTorch DataLoader for constructing blocks
            dataloader = DistDataLoader(
                dataset=nodes,
                batch_size=batch_size,
                collate_fn=sampler.sample_blocks,
                shuffle=False,
                drop_last=False)

            for blocks in tqdm.tqdm(dataloader):
                block = blocks[0].to(device)
                input_nodes = block.srcdata[dgl.NID]
                output_nodes = block.dstdata[dgl.NID]
                h = x[input_nodes].to(device)
                h_dst = h[:block.number_of_dst_nodes()]
                h = layer(block, (h, h_dst))
                if l != len(self.layers) - 1:
                    h = self.activation(h)
                    h = self.dropout(h)

                y[output_nodes] = h.cpu()

            x = y
            g.barrier()
        return y

def initializer(shape, dtype):
    arr = th.zeros(shape, dtype=dtype)
    arr.uniform_(-1, 1)
    return arr

class DistEmb(nn.Module):
    def __init__(self, num_nodes, emb_size, dgl_sparse_emb=False, dev_id='cpu'):
        super().__init__()
        self.dev_id = dev_id
        self.emb_size = emb_size
        self.dgl_sparse_emb = dgl_sparse_emb
        if dgl_sparse_emb:
            self.sparse_emb = NodeEmbedding(num_nodes, emb_size, name='sage', init_func=initializer)
        else:
            self.sparse_emb = th.nn.Embedding(num_nodes, emb_size, sparse=True)
            nn.init.uniform_(self.sparse_emb.weight, -1.0, 1.0)

    def forward(self, idx):
        # embeddings are stored in cpu
        idx = idx.cpu()
        if self.dgl_sparse_emb:
            return self.sparse_emb(idx, device=self.dev_id)
        else:
            return self.sparse_emb(idx).to(self.dev_id)

def load_embs(standalone, emb_layer, g):
    nodes = dgl.distributed.node_split(np.arange(g.number_of_nodes()),
                                       g.get_partition_book(), force_even=True)
    x = dgl.distributed.DistTensor(
        (g.number_of_nodes(),
         emb_layer.module.emb_size \
            if isinstance(emb_layer, th.nn.parallel.DistributedDataParallel) \
            else emb_layer.emb_size),
        th.float32, 'eval_embs',
        persistent=True)
    num_nodes = nodes.shape[0]
    for i in range((num_nodes + 1023) // 1024):
        idx = nodes[i * 1024: (i+1) * 1024 \
                    if (i+1) * 1024 < num_nodes \
                    else num_nodes]
        embeds = emb_layer(idx).cpu()
        x[idx] = embeds

    if not standalone:
        g.barrier()

    return x

def evaluate(standalone, model, emb_layer, g, labels, val_nid, test_nid, batch_size, device):
    """
    Evaluate the model on the validation set specified by ``val_nid``.
    g : The entire graph.
    inputs : The features of all the nodes.
    labels : The labels of all the nodes.
    val_nid : the node Ids for validation.
    batch_size : Number of nodes to compute at the same time.
    device : The GPU device to evaluate on.
    """
    model.eval()
    emb_layer.eval()
    with th.no_grad():
        inputs = load_embs(standalone, emb_layer, g)
        pred = model.inference(standalone, g, inputs, batch_size, device)
    model.train()
    emb_layer.train()
    return compute_acc(pred[val_nid], labels[val_nid]), compute_acc(pred[test_nid], labels[test_nid])

def run(args, device, data):
    # Unpack data
    train_nid, val_nid, test_nid, n_classes, g = data
    # Create sampler
    sampler = NeighborSampler(g, [int(fanout) for fanout in args.fan_out.split(',')],
                              dgl.distributed.sample_neighbors, device, load_feat=False)

    # Create DataLoader for constructing blocks
    dataloader = DistDataLoader(
        dataset=train_nid.numpy(),
        batch_size=args.batch_size,
        collate_fn=sampler.sample_blocks,
        shuffle=True,
        drop_last=False)

    # Define model and optimizer
    emb_layer = DistEmb(g.num_nodes(), args.num_hidden, dgl_sparse_emb=args.dgl_sparse, dev_id=device)
    model = TransDistSAGE(args.num_hidden, args.num_hidden, n_classes, args.num_layers, F.relu, args.dropout)
    model = model.to(device)
    if not args.standalone:
        if args.num_gpus == -1:
            model = th.nn.parallel.DistributedDataParallel(model)
        else:
            dev_id = g.rank() % args.num_gpus
            model = th.nn.parallel.DistributedDataParallel(model, device_ids=[dev_id], output_device=dev_id)
            if not args.dgl_sparse:
                emb_layer = th.nn.parallel.DistributedDataParallel(emb_layer)
    loss_fcn = nn.CrossEntropyLoss()
    loss_fcn = loss_fcn.to(device)
    optimizer = optim.Adam(model.parameters(), lr=args.lr)
    if args.dgl_sparse:
        emb_optimizer = dgl.distributed.optim.SparseAdam([emb_layer.sparse_emb], lr=args.sparse_lr)
        print('optimize DGL sparse embedding:', emb_layer.sparse_emb)
    elif args.standalone:
        emb_optimizer = th.optim.SparseAdam(list(emb_layer.sparse_emb.parameters()), lr=args.sparse_lr)
        print('optimize Pytorch sparse embedding:', emb_layer.sparse_emb)
    else:
        emb_optimizer = th.optim.SparseAdam(list(emb_layer.module.sparse_emb.parameters()), lr=args.sparse_lr)
        print('optimize Pytorch sparse embedding:', emb_layer.module.sparse_emb)


    train_size = th.sum(g.ndata['train_mask'][0:g.number_of_nodes()])

    # Training loop
    iter_tput = []
    epoch = 0
    for epoch in range(args.num_epochs):
        tic = time.time()

        sample_time = 0
        forward_time = 0
        backward_time = 0
        update_time = 0
        num_seeds = 0
        num_inputs = 0
        start = time.time()
        # Loop over the dataloader to sample the computation dependency graph as a list of
        # blocks.
        step_time = []
        for step, blocks in enumerate(dataloader):
            tic_step = time.time()
            sample_time += tic_step - start

            # The nodes for input lies at the LHS side of the first block.
            # The nodes for output lies at the RHS side of the last block.
            batch_inputs = blocks[0].srcdata[dgl.NID]
            batch_labels = blocks[-1].dstdata['labels']
            batch_labels = batch_labels.long()

            num_seeds += len(blocks[-1].dstdata[dgl.NID])
            num_inputs += len(blocks[0].srcdata[dgl.NID])
            blocks = [block.to(device) for block in blocks]
            batch_labels = batch_labels.to(device)
            # Compute loss and prediction
            start = time.time()
            batch_inputs = emb_layer(batch_inputs)
            batch_pred = model(blocks, batch_inputs)
            loss = loss_fcn(batch_pred, batch_labels)
            forward_end = time.time()
            emb_optimizer.zero_grad()
            optimizer.zero_grad()
            loss.backward()
            compute_end = time.time()
            forward_time += forward_end - start
            backward_time += compute_end - forward_end

            emb_optimizer.step()
            optimizer.step()
            update_time += time.time() - compute_end

            step_t = time.time() - tic_step
            step_time.append(step_t)
            iter_tput.append(len(blocks[-1].dstdata[dgl.NID]) / step_t)
            if step % args.log_every == 0:
                acc = compute_acc(batch_pred, batch_labels)
                gpu_mem_alloc = th.cuda.max_memory_allocated() / 1000000 if th.cuda.is_available() else 0
                print('Part {} | Epoch {:05d} | Step {:05d} | Loss {:.4f} | Train Acc {:.4f} | Speed (samples/sec) {:.4f} | GPU {:.1f} MB | time {:.3f} s'.format(
                    g.rank(), epoch, step, loss.item(), acc.item(), np.mean(iter_tput[3:]), gpu_mem_alloc, np.sum(step_time[-args.log_every:])))
            start = time.time()

        toc = time.time()
        print('Part {}, Epoch Time(s): {:.4f}, sample+data_copy: {:.4f}, forward: {:.4f}, backward: {:.4f}, update: {:.4f}, #seeds: {}, #inputs: {}'.format(
            g.rank(), toc - tic, sample_time, forward_time, backward_time, update_time, num_seeds, num_inputs))
        epoch += 1

        if epoch % args.eval_every == 0 and epoch != 0:
            start = time.time()
            val_acc, test_acc = evaluate(args.standalone, model.module, emb_layer, g,
                                         g.ndata['labels'], val_nid, test_nid, args.batch_size_eval, device)
            print('Part {}, Val Acc {:.4f}, Test Acc {:.4f}, time: {:.4f}'.format(g.rank(), val_acc, test_acc, time.time()-start))

def main(args):
    dgl.distributed.initialize(args.ip_config)
    if not args.standalone:
        th.distributed.init_process_group(backend='gloo')
    g = dgl.distributed.DistGraph(args.graph_name, part_config=args.part_config)
    print('rank:', g.rank())

    pb = g.get_partition_book()
    train_nid = dgl.distributed.node_split(g.ndata['train_mask'], pb, force_even=True)
    val_nid = dgl.distributed.node_split(g.ndata['val_mask'], pb, force_even=True)
    test_nid = dgl.distributed.node_split(g.ndata['test_mask'], pb, force_even=True)
    local_nid = pb.partid2nids(pb.partid).detach().numpy()
    print('part {}, train: {} (local: {}), val: {} (local: {}), test: {} (local: {})'.format(
        g.rank(), len(train_nid), len(np.intersect1d(train_nid.numpy(), local_nid)),
        len(val_nid), len(np.intersect1d(val_nid.numpy(), local_nid)),
        len(test_nid), len(np.intersect1d(test_nid.numpy(), local_nid))))
    if args.num_gpus == -1:
        device = th.device('cpu')
    else:
        device = th.device('cuda:'+str(g.rank() % args.num_gpus))
    labels = g.ndata['labels'][np.arange(g.number_of_nodes())]
    n_classes = len(th.unique(labels[th.logical_not(th.isnan(labels))]))
    print('#labels:', n_classes)

    # Pack data
    data = train_nid, val_nid, test_nid, n_classes, g
    run(args, device, data)
    print("parent ends")

if __name__ == '__main__':
    parser = argparse.ArgumentParser(description='GCN')
    register_data_args(parser)
    parser.add_argument('--graph_name', type=str, help='graph name')
    parser.add_argument('--id', type=int, help='the partition id')
    parser.add_argument('--ip_config', type=str, help='The file for IP configuration')
    parser.add_argument('--part_config', type=str, help='The path to the partition config file')
    parser.add_argument('--num_clients', type=int, help='The number of clients')
    parser.add_argument('--n_classes', type=int, help='the number of classes')
    parser.add_argument('--num_gpus', type=int, default=-1,
                        help="the number of GPU device. Use -1 for CPU training")
    parser.add_argument('--num_epochs', type=int, default=20)
    parser.add_argument('--num_hidden', type=int, default=16)
    parser.add_argument('--num_layers', type=int, default=2)
    parser.add_argument('--fan_out', type=str, default='10,25')
    parser.add_argument('--batch_size', type=int, default=1000)
    parser.add_argument('--batch_size_eval', type=int, default=100000)
    parser.add_argument('--log_every', type=int, default=20)
    parser.add_argument('--eval_every', type=int, default=5)
    parser.add_argument('--lr', type=float, default=0.003)
    parser.add_argument('--dropout', type=float, default=0.5)
    parser.add_argument('--local_rank', type=int, help='get rank of the process')
    parser.add_argument('--standalone', action='store_true', help='run in the standalone mode')
    parser.add_argument("--dgl_sparse", action='store_true',
            help='Whether to use DGL sparse embedding')
    parser.add_argument("--sparse_lr", type=float, default=1e-2,
            help="sparse lr rate")
    args = parser.parse_args()

    print(args)
    main(args)