main.py 8.26 KB
Newer Older
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
import torch
import torch.nn as nn
import torch.nn.functional as F
import pandas as pd
import numpy as np
import tqdm
from rec.model.pinsage import PinSage
from rec.datasets.movielens import MovieLens
from rec.utils import cuda
from dgl import DGLGraph

import argparse
import pickle
import os

parser = argparse.ArgumentParser()
parser.add_argument('--opt', type=str, default='SGD')
parser.add_argument('--lr', type=float, default=1)
parser.add_argument('--sched', type=str, default='none')
parser.add_argument('--layers', type=int, default=2)
parser.add_argument('--use-feature', action='store_true')
parser.add_argument('--sgd-switch', type=int, default=-1)
parser.add_argument('--n-negs', type=int, default=1)
parser.add_argument('--loss', type=str, default='hinge')
parser.add_argument('--hard-neg-prob', type=float, default=0)
args = parser.parse_args()

print(args)

cache_file = 'ml.pkl'

if os.path.exists(cache_file):
    with open(cache_file, 'rb') as f:
        ml = pickle.load(f)
else:
    ml = MovieLens('./ml-1m')
    with open(cache_file, 'wb') as f:
        pickle.dump(ml, f)

g = ml.g

n_hidden = 100
n_layers = args.layers
batch_size = 256
margin = 0.9

n_negs = args.n_negs
hard_neg_prob = args.hard_neg_prob

loss_func = {
        'hinge': lambda diff: (diff + margin).clamp(min=0).mean(),
        'bpr': lambda diff: (1 - torch.sigmoid(-diff)).mean(),
        }

model = cuda(PinSage(
    g.number_of_nodes(),
    [n_hidden] * (n_layers + 1),
    20,
    0.5,
    10,
    use_feature=args.use_feature,
    G=g,
    ))
opt = getattr(torch.optim, args.opt)(model.parameters(), lr=args.lr)


def forward(model, g_prior, nodeset, train=True):
    if train:
        return model(g_prior, nodeset)
    else:
        with torch.no_grad():
            return model(g_prior, nodeset)


Quan (Andy) Gan's avatar
Quan (Andy) Gan committed
75
def runtrain(g_train_bases, g_train_pairs, train):
76
77
78
79
80
81
    global opt
    if train:
        model.train()
    else:
        model.eval()

Quan (Andy) Gan's avatar
Quan (Andy) Gan committed
82
83
84
85
86
    g_prior = g.edge_subgraph(g_train_bases, preserve_nodes=True)
    g_prior.copy_from_parent()

    # generate batches of training pairs
    edge_batches = g_train_pairs[torch.randperm(g_train_pairs.shape[0])].split(batch_size)
87
88
89
90
91
92
93

    with tqdm.tqdm(edge_batches) as tq:
        sum_loss = 0
        sum_acc = 0
        count = 0
        for batch_id, batch in enumerate(tq):
            count += batch.shape[0]
Quan (Andy) Gan's avatar
Quan (Andy) Gan committed
94
            # Get source (user) and destination (item) nodes, as well as negative items
95
96
97
            src, dst = g.find_edges(batch)
            dst_neg = []
            for i in range(len(dst)):
Quan (Andy) Gan's avatar
Quan (Andy) Gan committed
98
99
                dst_neg.append(np.random.randint(
                    len(ml.user_ids), len(ml.user_ids) + len(ml.movie_ids), n_negs))
100
101
102
103
104
            dst_neg = torch.LongTensor(dst_neg)
            dst = dst.view(-1, 1).expand_as(dst_neg).flatten()
            src = src.view(-1, 1).expand_as(dst_neg).flatten()
            dst_neg = dst_neg.flatten()

Quan (Andy) Gan's avatar
Quan (Andy) Gan committed
105
            # make sure that the source/destination/negative nodes have successors
106
107
108
109
110
111
112
113
114
115
116
117
118
            mask = (g_prior.in_degrees(dst_neg) > 0) & \
                   (g_prior.in_degrees(dst) > 0) & \
                   (g_prior.in_degrees(src) > 0)
            src = src[mask]
            dst = dst[mask]
            dst_neg = dst_neg[mask]
            if len(src) == 0:
                continue

            nodeset = cuda(torch.cat([src, dst, dst_neg]))
            src_size, dst_size, dst_neg_size = \
                    src.shape[0], dst.shape[0], dst_neg.shape[0]

Quan (Andy) Gan's avatar
Quan (Andy) Gan committed
119
            # get representations and compute losses
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
            h_src, h_dst, h_dst_neg = (
                    forward(model, g_prior, nodeset, train)
                    .split([src_size, dst_size, dst_neg_size]))

            diff = (h_src * (h_dst_neg - h_dst)).sum(1)
            loss = loss_func[args.loss](diff)
            acc = (diff < 0).sum()
            assert loss.item() == loss.item()

            grad_sqr_norm = 0
            if train:
                opt.zero_grad()
                loss.backward()
                for name, p in model.named_parameters():
                    assert (p.grad != p.grad).sum() == 0
                    grad_sqr_norm += p.grad.norm().item() ** 2
                opt.step()

            sum_loss += loss.item()
            sum_acc += acc.item() / n_negs
            avg_loss = sum_loss / (batch_id + 1)
            avg_acc = sum_acc / count
            tq.set_postfix({'loss': '%.6f' % loss.item(),
                            'avg_loss': '%.3f' % avg_loss,
                            'avg_acc': '%.3f' % avg_acc,
                            'grad_norm': '%.6f' % np.sqrt(grad_sqr_norm)})

    return avg_loss, avg_acc


Quan (Andy) Gan's avatar
Quan (Andy) Gan committed
150
def runtest(g_train_bases, ml, validation=True):
151
152
153
154
155
    model.eval()

    n_users = len(ml.users.index)
    n_items = len(ml.movies.index)

Quan (Andy) Gan's avatar
Quan (Andy) Gan committed
156
157
    g_prior = g.edge_subgraph(g_train_bases, preserve_nodes=True)
    g_prior.copy_from_parent()
158

Quan (Andy) Gan's avatar
Quan (Andy) Gan committed
159
    # Pre-compute the representations of users and items
160
161
162
163
164
165
166
167
168
169
170
171
172
173
    hs = []
    with torch.no_grad():
        with tqdm.trange(n_users + n_items) as tq:
            for node_id in tq:
                nodeset = cuda(torch.LongTensor([node_id]))
                h = forward(model, g_prior, nodeset, False)
                hs.append(h)
    h = torch.cat(hs, 0)

    rr = []

    with torch.no_grad():
        with tqdm.trange(n_users) as tq:
            for u_nid in tq:
Quan (Andy) Gan's avatar
Quan (Andy) Gan committed
174
175
176
177
                # For each user, exclude the items appearing in
                # (1) the training set, and
                # (2) either the validation set when testing, or the test set when
                #     validating.
178
179
180
181
182
183
184
185
186
187
188
189
190
                uid = ml.user_ids[u_nid]
                pids_exclude = ml.ratings[
                        (ml.ratings['user_id'] == uid) &
                        (ml.ratings['train'] | ml.ratings['test' if validation else 'valid'])
                        ]['movie_id'].values
                pids_candidate = ml.ratings[
                        (ml.ratings['user_id'] == uid) &
                        ml.ratings['valid' if validation else 'test']
                        ]['movie_id'].values
                pids = np.setdiff1d(ml.movie_ids, pids_exclude)
                p_nids = np.array([ml.movie_ids_invmap[pid] for pid in pids])
                p_nids_candidate = np.array([ml.movie_ids_invmap[pid] for pid in pids_candidate])

Quan (Andy) Gan's avatar
Quan (Andy) Gan committed
191
                # compute scores of items and rank them, then compute the MRR.
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
                dst = torch.from_numpy(p_nids) + n_users
                src = torch.zeros_like(dst).fill_(u_nid)
                h_dst = h[dst]
                h_src = h[src]

                score = (h_src * h_dst).sum(1)
                score_sort_idx = score.sort(descending=True)[1].cpu().numpy()

                rank_map = {v: i for i, v in enumerate(p_nids[score_sort_idx])}
                rank_candidates = np.array([rank_map[p_nid] for p_nid in p_nids_candidate])
                rank = 1 / (rank_candidates + 1)
                rr.append(rank.mean())
                tq.set_postfix({'rank': rank.mean()})

    return np.array(rr)


def train():
    global opt, sched
    best_mrr = 0
    for epoch in range(500):
        ml.refresh_mask()
Quan (Andy) Gan's avatar
Quan (Andy) Gan committed
214
215
216
217
218
219
220
221
222
223

        # In training, we perform message passing on edges marked with 'prior', and
        # do link prediction on edges marked with 'train'.
        # 'prior' and 'train' are disjoint so that the training pairs can not pass
        # messages between each other.
        # 'prior' and 'train' are re-generated everytime with ml.refresh_mask() above.
        g_train_bases = g.filter_edges(lambda edges: edges.data['prior'])
        g_train_pairs = g.filter_edges(lambda edges: edges.data['train'] & ~edges.data['inv'])
        # In testing we perform message passing on both 'prior' and 'train' edges.
        g_test_bases = g.filter_edges(
224
225
226
227
                lambda edges: edges.data['prior'] | edges.data['train'])

        print('Epoch %d validation' % epoch)
        with torch.no_grad():
Quan (Andy) Gan's avatar
Quan (Andy) Gan committed
228
            valid_mrr = runtest(g_test_bases, ml, True)
229
230
231
232
233
234
            if best_mrr < valid_mrr.mean():
                best_mrr = valid_mrr.mean()
                torch.save(model.state_dict(), 'model.pt')
        print(pd.Series(valid_mrr).describe())
        print('Epoch %d test' % epoch)
        with torch.no_grad():
Quan (Andy) Gan's avatar
Quan (Andy) Gan committed
235
            test_mrr = runtest(g_test_bases, ml, False)
236
237
238
        print(pd.Series(test_mrr).describe())

        print('Epoch %d train' % epoch)
Quan (Andy) Gan's avatar
Quan (Andy) Gan committed
239
        runtrain(g_train_bases, g_train_pairs, True)
240
241
242
243


if __name__ == '__main__':
    train()