gather_mm.cu 20.2 KB
Newer Older
Israt Nisa's avatar
Israt Nisa committed
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
/*!
 *  Copyright (c) 2020 by Contributors
 * \file array/cuda/gather_mm.cu
 * \brief GatherMM C APIs and definitions.
 */
#include <dgl/array.h>
#include <algorithm>  // std::swap
#include "./utils.h"
#include "./functor.cuh"
#include "./atomic.cuh"

namespace dgl {
using namespace cuda;
namespace aten {

namespace {

/*! \brief Call cuBLAS GEMM API for dense matmul operation for float and double. */
template <typename DType>
cublasStatus_t cublasGemm(cublasHandle_t handle, cublasOperation_t transa,
    cublasOperation_t transb, int m, int n, int k,
    const DType* alpha, const DType* A, int lda,
    const DType* B, int ldb, const DType* beta,
    DType* C, int ldc) {
  LOG(INFO) << "Not supported dtype";
  return CUBLAS_STATUS_EXECUTION_FAILED;
}

29
30
31
32
33
34
35
36
37
template <>
cublasStatus_t cublasGemm<__half>(cublasHandle_t handle, cublasOperation_t transa,
    cublasOperation_t transb, int m, int n, int k,
    const __half* alpha, const __half* A, int lda,
    const __half* B, int ldb, const __half* beta,
    __half* C, int ldc) {
  return cublasHgemm(handle, transa, transb, m, n, k, alpha, A, lda,
      B, ldb, beta, C, ldc);
}
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54

#if BF16_ENABLED
template <>
cublasStatus_t cublasGemm<__nv_bfloat16>(cublasHandle_t handle, cublasOperation_t transa,
    cublasOperation_t transb, int m, int n, int k,
    const __nv_bfloat16* alpha, const __nv_bfloat16* A, int lda,
    const __nv_bfloat16* B, int ldb, const __nv_bfloat16* beta,
    __nv_bfloat16* C, int ldc) {
  float alpha_float = __bfloat162float(*alpha);
  float beta_float = __bfloat162float(*beta);
  return cublasGemmEx(handle, transa, transb, m, n, k,
      &alpha_float, A, CUDA_R_16BF, lda,
      B, CUDA_R_16BF, ldb,
      &beta_float, C, CUDA_R_16BF, ldc,
      CUBLAS_COMPUTE_32F, CUBLAS_GEMM_DEFAULT_TENSOR_OP);
}
#endif  // BF16_ENABLED
55

Israt Nisa's avatar
Israt Nisa committed
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
template <>
cublasStatus_t cublasGemm<float>(cublasHandle_t handle, cublasOperation_t transa,
    cublasOperation_t transb, int m, int n, int k,
    const float* alpha, const float* A, int lda,
    const float* B, int ldb, const float* beta,
    float* C, int ldc) {
  return cublasSgemm(handle, transa, transb, m, n, k, alpha, A, lda,
      B, ldb, beta, C, ldc);
}

template <>
cublasStatus_t cublasGemm<double>(cublasHandle_t handle, cublasOperation_t transa,
    cublasOperation_t transb, int m, int n, int k,
    const double* alpha, const double* A, int lda,
    const double* B, int ldb, const double* beta,
    double* C, int ldc) {
  return cublasDgemm(handle, transa, transb, m, n, k, alpha, A, lda,
      B, ldb, beta, C, ldc);
}

}  // namespace

namespace cuda {

/* \Note Each row of A multiplies a segment of matrix of B of dimension in_len * outlen.
  One warp is assigned to process one row of A. Each WARP sequentially multiplies
  one element of A and a row of B to compute partial result of the output. A
  is loaded in shared memory in a coalesced way. Output matrix is loaded in
  registers. B should get benefit from L2 cache.
*/
template <typename Idx, typename DType>
87
__global__ void GatherMMScatterKernel(
Israt Nisa's avatar
Israt Nisa committed
88
89
90
91
92
    const DType* __restrict__ A,
    const DType* __restrict__ B,
    DType* __restrict__ C,
    const Idx* __restrict__ idx_a,
    const Idx* __restrict__ idx_b,
93
94
95
96
97
    const Idx* __restrict__ idx_c,
    const int64_t num_rows,
    const int64_t in_len,
    const int64_t out_len) {

Israt Nisa's avatar
Israt Nisa committed
98
99
100
101
102
103
    unsigned int tId = threadIdx.x;
    unsigned int laneId = tId & 31;
    unsigned int gId = (blockIdx.x * blockDim.x + threadIdx.x);
    unsigned int warpId = gId >> 5;
    unsigned int row = warpId;
    if (row < num_rows) {
104
105
106
107
108
        const unsigned int local_row = row & 3;  // hardcoded for TB size 128 (4 warps)
        const Idx cur_rowA = (idx_a) ? idx_a[row] : row;
        const Idx cur_rowB = (idx_b) ? idx_b[row] : row;
        const Idx cur_rowC = (idx_c) ? idx_c[row] : row;
        const Idx B_offset = cur_rowB * in_len * out_len;
Israt Nisa's avatar
Israt Nisa committed
109
110
111
112
113
        const int sh_a_tile = 64;
        __shared__ DType sh_A[4 * sh_a_tile];
        int a_tile = sh_a_tile;
        for (unsigned int k_start = 0; k_start < in_len; k_start += 64) {
            if ((in_len - k_start) < a_tile) a_tile = in_len - k_start;
114
            // Load A in shared mem in a coalesced way
Israt Nisa's avatar
Israt Nisa committed
115
116
117
118
119
            for (unsigned int l = laneId; l < a_tile; l += 32)
                sh_A[local_row * sh_a_tile + l] = A[cur_rowA * in_len + (k_start + l)];
            __syncwarp();

            for (unsigned int outloop = 0; outloop < out_len; outloop +=32) {
120
                DType out_reg = static_cast<DType>(0.0f);  // thread private
Israt Nisa's avatar
Israt Nisa committed
121
122
                const unsigned int l = laneId;
                if (l < out_len) {
123
                    // iterate over elements of a row of A
Israt Nisa's avatar
Israt Nisa committed
124
125
                    for (unsigned int i = 0; i < a_tile; i++) {
                        const DType a_val =  sh_A[local_row * sh_a_tile + i];
126
                        // iterate over elements of a row of B in parallel
Israt Nisa's avatar
Israt Nisa committed
127
128
                        out_reg += a_val * B[B_offset + ((i + k_start) * out_len + (outloop + l))];
                    }
129
130
131
132
133
                    if (idx_c) {
                      AtomicAdd(C + cur_rowC * out_len + (outloop + l), out_reg);
                    } else {
                      C[cur_rowC * out_len + (outloop + l)] += out_reg;
                    }
Israt Nisa's avatar
Israt Nisa committed
134
135
136
137
138
139
                }
            }
        }
    }
}

140

Israt Nisa's avatar
Israt Nisa committed
141
/* \Note Output matrix is accumulated via atomic operations. Rest of the strategies
142
  are similar to GatherMMKernel. One warp is assigned to process one row of A. Each
Israt Nisa's avatar
Israt Nisa committed
143
144
145
146
147
  WARP sequentially multiplies one element of A and a row of B to compute partial
  result of the output. A is loaded in shared memory in a coalesced way. B should
  get benefit from L2 cache.
*/
template <typename Idx, typename DType>
148
__global__ void GatherMMScatterKernel2(
Israt Nisa's avatar
Israt Nisa committed
149
150
151
152
153
154
    const DType* __restrict__ A,
    const DType* __restrict__ B,
    DType* __restrict__ C,
    const Idx* __restrict__ idx_a,
    const Idx* __restrict__ idx_b,
    const Idx* __restrict__ idx_c,
155
156
157
158
    const int64_t num_rows,
    const int64_t in_len,
    const int64_t out_len) {

Israt Nisa's avatar
Israt Nisa committed
159
160
161
162
163
164
    unsigned int tId = threadIdx.x;
    unsigned int laneId = tId & 31;
    unsigned int gId = (blockIdx.x * blockDim.x + threadIdx.x);
    unsigned int warpId = gId >> 5;
    unsigned int row = warpId;
    if (row < num_rows) {
165
166
167
168
169
        const unsigned int local_row = row & 3;  // hardcoded for TB size 128 (4 warps)
        const Idx row_a = (idx_a) ? idx_a[row] : row;
        const Idx row_b = (idx_b) ? idx_b[row] : row;
        const Idx row_c = (idx_c) ? idx_c[row] : row;
        const Idx C_offset = row_c * in_len * out_len;
Israt Nisa's avatar
Israt Nisa committed
170
171
172
173
174
175
176
177
178
179
180
        const int sh_a_tile = 64;
        __shared__ DType sh_A[4 * sh_a_tile];
        int a_tile = sh_a_tile;
        for (unsigned int k_start = 0; k_start < in_len; k_start += 64) {
            if ((in_len - k_start) < a_tile) a_tile = in_len - k_start;
            /* Load A in shared mem in a coalesced way */
            for (unsigned int l = laneId; l < a_tile; l += 32)
                sh_A[local_row * sh_a_tile + l] = A[row_a * in_len + (k_start + l)];
            __syncwarp();

            for (unsigned int outloop = 0; outloop < out_len; outloop +=32) {
181
                DType out_reg = static_cast<DType>(0.0f);  // thread private
Israt Nisa's avatar
Israt Nisa committed
182
183
184
185
186
187
188
                const unsigned int l = laneId;
                if (l < out_len) {
                    const DType b_val = B[row_b * out_len + (outloop + l)];
                    /* iterate over elements of a row of A */
                    for (unsigned int i = 0; i < a_tile; i++) {
                        const DType a_val = sh_A[local_row * sh_a_tile + i];
                        const Idx C_idx = C_offset + ((i + k_start) * out_len + (outloop + l));
189
                        AtomicAdd(C + C_idx, a_val * b_val);
Israt Nisa's avatar
Israt Nisa committed
190
191
192
193
194
195
196
197
198
                    }
                }
            }
        }
    }
}

}  // namespace cuda

199
200
201
202
203
204
205
206
207
208
/*!
 * \brief Implementation of Gather_mm operator. The input matrix A is
 *        expected to be sorted according to relation type.
 * \param A The input dense matrix of dimension m x k
 * \param B The input dense matrix of dimension k x n
 * \param C The output dense matrix of dimension m x n
 * \param seglen_A The input vector of size R. Each element
 *        is the length of segments of input ``A``
 * \param a_trans Matrix A to be transposed
 * \param b_trans Matrix B to be transposed
Israt Nisa's avatar
Israt Nisa committed
209
 */
210
template <int XPU, typename IdType, typename DType>
211
212
213
214
215
void SegmentMM(const NDArray A,
               const NDArray B,
               NDArray C,
               const NDArray seglen_A,
               bool a_trans, bool b_trans) {
216
217
218
219
220
221
222
223
224
225
    auto device = runtime::DeviceAPI::Get(A->ctx);
    cudaStream_t stream = runtime::getCurrentCUDAStream();
    const DType *A_data = A.Ptr<DType>();
    const DType *B_data = B.Ptr<DType>();
    const IdType* seglen_A_data = seglen_A.Ptr<IdType>();
    DType *C_data = C.Ptr<DType>();
    int64_t A_offset = 0, B_offset = 0, C_offset = 0;
    int64_t m, n, k;
    int64_t num_rel = seglen_A.NumElements();
    DType alpha = 1., beta = 0.;
Israt Nisa's avatar
Israt Nisa committed
226

227
228
229
230
    auto* thr_entry = runtime::CUDAThreadEntry::ThreadLocal();
    if (!thr_entry->cublas_handle)
        CUBLAS_CALL(cublasCreate(&(thr_entry->cublas_handle)));
    CUBLAS_CALL(cublasSetStream(thr_entry->cublas_handle, stream));
Israt Nisa's avatar
Israt Nisa committed
231

232
233
234
235
236
237
238
239
240
241
242
243
244
    IdType m_offset = 0;
    for (IdType etype = 0; etype < num_rel; ++etype) {
        m = seglen_A_data[etype];  // rows of A
        CHECK_LE(m_offset + m, A->shape[0]) << "Segment index out of bound of A->shape[0].";
        n = B->shape[2];  // cols of B
        k = B->shape[1];  // cols of A == rows of B
        int ldb = n, lda = k, ldc = n;
        cublasOperation_t transB = CUBLAS_OP_N;
        cublasOperation_t transA = CUBLAS_OP_N;
        if (b_trans) {
            transB = CUBLAS_OP_T;
            ldb = n, lda = n, ldc = k;
            std::swap(n, k);
Israt Nisa's avatar
Israt Nisa committed
245
        }
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
        CUBLAS_CALL(cublasGemm<DType>(
            thr_entry->cublas_handle,
            transB,
            transA,
            n, m, k,
            &alpha,
            B_data + B_offset, ldb,
            A_data + A_offset, lda,
            &beta,
            C_data + C_offset, ldc));
        A_offset += m * k;
        B_offset += k * n;
        C_offset += m * n;
        m_offset += m;
    }
Israt Nisa's avatar
Israt Nisa committed
261
262
}

263
template <int XPU, typename IdType, typename DType>
264
265
266
267
void SegmentMMBackwardB(const NDArray A,
                        const NDArray dC,
                        NDArray dB,
                        const NDArray seglen) {
268
269
270
271
272
273
274
275
276
277
    auto device = runtime::DeviceAPI::Get(A->ctx);
    cudaStream_t stream = runtime::getCurrentCUDAStream();
    const DType *A_data = A.Ptr<DType>();
    const DType *dC_data = dC.Ptr<DType>();
    const IdType* seglen_data = seglen.Ptr<IdType>();
    DType *dB_data = dB.Ptr<DType>();
    int64_t A_offset = 0, dC_offset = 0, dB_offset = 0;
    int64_t m, n, k;
    int64_t num_rel = seglen.NumElements();
    DType alpha = 1., beta = 1.;
278

279
280
281
282
    auto* thr_entry = runtime::CUDAThreadEntry::ThreadLocal();
    if (!thr_entry->cublas_handle)
        CUBLAS_CALL(cublasCreate(&(thr_entry->cublas_handle)));
    CUBLAS_CALL(cublasSetStream(thr_entry->cublas_handle, stream));
283

284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
    IdType k_offset = 0;
    for (IdType etype = 0; etype < num_rel; ++etype) {
        m = dC->shape[1];
        n = A->shape[1];
        k = seglen_data[etype];
        CHECK_LE(k_offset + k, A->shape[0]) << "Segement index out of bound of A->shape[0].";
        int lddC = m, ldA = n, lddB = m;
        cublasOperation_t trans_dC = CUBLAS_OP_N;
        cublasOperation_t trans_A = CUBLAS_OP_T;
        CUBLAS_CALL(cublasGemm<DType>(
            thr_entry->cublas_handle,
            trans_dC,
            trans_A,
            m, n, k,
            &alpha,
            dC_data + dC_offset, lddC,
            A_data + A_offset, ldA,
            &beta,
            dB_data + dB_offset, lddB));
        dC_offset += m * k;
        A_offset += n * k;
        dB_offset += m * n;
        k_offset += k;
    }
Israt Nisa's avatar
Israt Nisa committed
308
309
310
311
312
313
314
315
316
317
318
}

/*!
 * \brief Implementation of Gather_mm operator. The input matrix A is
 *        expected to be sorted according to relation type.
 * \param A The input dense matrix of dimension m x k
 * \param B The input dense matrix of dimension k x n
 * \param C The output dense matrix of dimension m x n
 * \param idx_a The input vector to gather left hand operand on
 * \param idx_b The input vector to gather right hand operand on
 */
319

320
template <int XPU, typename IdType, typename DType>
321
322
323
324
325
void GatherMM(const NDArray A,
              const NDArray B,
              NDArray C,
              const NDArray idx_a,
              const NDArray idx_b) {
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
    auto device = runtime::DeviceAPI::Get(A->ctx);
    cudaStream_t stream = runtime::getCurrentCUDAStream();
    int64_t out_len = B->shape[2];  // cols of B
    int64_t in_len = A->shape[1];  // cols of A
    const int64_t tot_num_rows = A->shape[0];
    const int ntx = 128;
    const int warp_size = 32;
    const int nbx = ((tot_num_rows * warp_size + ntx - 1) / ntx);
    const dim3 nblks(nbx);
    const dim3 nthrs(ntx);
    CUDA_KERNEL_CALL((cuda::GatherMMScatterKernel<IdType, DType>),
        nblks, nthrs, 0, stream,
        A.Ptr<DType>(),
        B.Ptr<DType>(),
        C.Ptr<DType>(),
        idx_a.Ptr<IdType>(),
        idx_b.Ptr<IdType>(),
        nullptr,
        tot_num_rows, in_len, out_len);
Israt Nisa's avatar
Israt Nisa committed
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
}

/*!
 * \brief Implementation of Gather_mm operator. The input matrix A is
 *        expected to be sorted according to relation type.
 * \param A The input dense matrix of dimension m x k
 * \param B The input dense matrix of dimension k x n
 * \param C The output dense matrix of dimension m x n
 * \param idx_a The input vector to gather left hand operand on
 * \param idx_b The input vector to gather right hand operand on
 * \param idx_c The input vector to gather output operand on
 * \param num_rel The number of idx types in idx_b
 * \param a_trans Matrix A to be transposed
 * \param b_trans Matrix B to be transposed
 */
360
template <int XPU, typename IdType, typename DType>
361
362
363
364
365
366
void GatherMMScatter(const NDArray A,
                     const NDArray B,
                     NDArray C,
                     const NDArray idx_a,
                     const NDArray idx_b,
                     const NDArray idx_c) {
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
    auto device = runtime::DeviceAPI::Get(A->ctx);
    cudaStream_t stream = runtime::getCurrentCUDAStream();
    const IdType *idx_c_data = idx_c.Ptr<IdType>();
    int64_t out_len = (B->ndim == 2)? B->shape[1] : B->shape[2];  // cols of B
    int64_t in_len = A->shape[1];  // cols of A
    int64_t tot_num_rows = A->shape[0];
    const int ntx = 128;
    const int warp_size = 32;
    const int nbx = ((tot_num_rows * warp_size + ntx - 1) / ntx);
    const dim3 nblks(nbx);
    const dim3 nthrs(ntx);
    if (B->ndim == 3) {
        CUDA_KERNEL_CALL((cuda::GatherMMScatterKernel<IdType, DType>),
            nblks, nthrs, 0, stream,
            A.Ptr<DType>(),
            B.Ptr<DType>(),
            C.Ptr<DType>(),
            idx_a.Ptr<IdType>(),
            idx_b.Ptr<IdType>(),
            idx_c.Ptr<IdType>(),
            tot_num_rows, in_len, out_len);
    } else {
        // Custom kernel for W_grad[idx_c[i]] = H^T[i] * C.grad[i]
        // This kernel accesses rows of A in a transposed way w/o explicitly converting A
        CUDA_KERNEL_CALL((cuda::GatherMMScatterKernel2<IdType, DType>),
            nblks, nthrs, 0, stream,
            A.Ptr<DType>(),
            B.Ptr<DType>(),
            C.Ptr<DType>(),
            idx_a.Ptr<IdType>(),
            idx_b.Ptr<IdType>(),
            idx_c.Ptr<IdType>(),
            tot_num_rows, in_len, out_len);
    }
Israt Nisa's avatar
Israt Nisa committed
401
402
}

403
404
405
406
template void GatherMM<kDGLCUDA, int32_t, __half>(
    const NDArray A, const NDArray B, NDArray C,
    const NDArray idx_a, const NDArray idx_b);
template void GatherMM<kDGLCUDA, int64_t, __half>(
Israt Nisa's avatar
Israt Nisa committed
407
    const NDArray A, const NDArray B, NDArray C,
408
    const NDArray idx_a, const NDArray idx_b);
409
410
#if BF16_ENABLED
template void GatherMM<kDGLCUDA, int32_t, __nv_bfloat16>(
Israt Nisa's avatar
Israt Nisa committed
411
    const NDArray A, const NDArray B, NDArray C,
412
    const NDArray idx_a, const NDArray idx_b);
413
template void GatherMM<kDGLCUDA, int64_t, __nv_bfloat16>(
Israt Nisa's avatar
Israt Nisa committed
414
    const NDArray A, const NDArray B, NDArray C,
415
    const NDArray idx_a, const NDArray idx_b);
416
417
#endif  // BF16_ENABLED
template void GatherMM<kDGLCUDA, int32_t, float>(
Israt Nisa's avatar
Israt Nisa committed
418
    const NDArray A, const NDArray B, NDArray C,
419
    const NDArray idx_a, const NDArray idx_b);
420
template void GatherMM<kDGLCUDA, int64_t, float>(
Israt Nisa's avatar
Israt Nisa committed
421
    const NDArray A, const NDArray B, NDArray C,
422
    const NDArray idx_a, const NDArray idx_b);
423
424
425
426
template void GatherMM<kDGLCUDA, int32_t, double>(
    const NDArray A, const NDArray B, NDArray C,
    const NDArray idx_a, const NDArray idx_b);
template void GatherMM<kDGLCUDA, int64_t, double>(
Israt Nisa's avatar
Israt Nisa committed
427
    const NDArray A, const NDArray B, NDArray C,
428
    const NDArray idx_a, const NDArray idx_b);
Israt Nisa's avatar
Israt Nisa committed
429

430
431
432
433
434
435
436
437
template void GatherMMScatter<kDGLCUDA, int32_t, __half>(
    const NDArray A, const NDArray B, NDArray C,
    const NDArray idx_a, const NDArray idx_b, const NDArray idx_c);
template void GatherMMScatter<kDGLCUDA, int64_t, __half>(
    const NDArray A, const NDArray B, NDArray C,
    const NDArray idx_a, const NDArray idx_b, const NDArray idx_c);
#if BF16_ENABLED
template void GatherMMScatter<kDGLCUDA, int32_t, __nv_bfloat16>(
Israt Nisa's avatar
Israt Nisa committed
438
    const NDArray A, const NDArray B, NDArray C,
439
    const NDArray idx_a, const NDArray idx_b, const NDArray idx_c);
440
template void GatherMMScatter<kDGLCUDA, int64_t, __nv_bfloat16>(
Israt Nisa's avatar
Israt Nisa committed
441
    const NDArray A, const NDArray B, NDArray C,
442
    const NDArray idx_a, const NDArray idx_b, const NDArray idx_c);
443
444
#endif  // BF16_ENABLED
template void GatherMMScatter<kDGLCUDA, int32_t, float>(
Israt Nisa's avatar
Israt Nisa committed
445
    const NDArray A, const NDArray B, NDArray C,
446
    const NDArray idx_a, const NDArray idx_b, const NDArray idx_c);
447
template void GatherMMScatter<kDGLCUDA, int64_t, float>(
Israt Nisa's avatar
Israt Nisa committed
448
    const NDArray A, const NDArray B, NDArray C,
449
    const NDArray idx_a, const NDArray idx_b, const NDArray idx_c);
450
template void GatherMMScatter<kDGLCUDA, int32_t, double>(
Israt Nisa's avatar
Israt Nisa committed
451
    const NDArray A, const NDArray B, NDArray C,
452
    const NDArray idx_a, const NDArray idx_b, const NDArray idx_c);
453
template void GatherMMScatter<kDGLCUDA, int64_t, double>(
Israt Nisa's avatar
Israt Nisa committed
454
    const NDArray A, const NDArray B, NDArray C,
455
    const NDArray idx_a, const NDArray idx_b, const NDArray idx_c);
Israt Nisa's avatar
Israt Nisa committed
456

457
template void SegmentMM<kDGLCUDA, int32_t, __half>(
Israt Nisa's avatar
Israt Nisa committed
458
459
    const NDArray A, const NDArray B, NDArray C,
    const NDArray seglen_A, bool a_trans, bool b_trans);
460
template void SegmentMM<kDGLCUDA, int64_t, __half>(
Israt Nisa's avatar
Israt Nisa committed
461
462
    const NDArray A, const NDArray B, NDArray C,
    const NDArray seglen_A, bool a_trans, bool b_trans);
463
464
#if BF16_ENABLED
template void SegmentMM<kDGLCUDA, int32_t, __nv_bfloat16>(
Israt Nisa's avatar
Israt Nisa committed
465
466
    const NDArray A, const NDArray B, NDArray C,
    const NDArray seglen_A, bool a_trans, bool b_trans);
467
template void SegmentMM<kDGLCUDA, int64_t, __nv_bfloat16>(
Israt Nisa's avatar
Israt Nisa committed
468
469
    const NDArray A, const NDArray B, NDArray C,
    const NDArray seglen_A, bool a_trans, bool b_trans);
470
471
#endif  // BF16_ENABLED
template void SegmentMM<kDGLCUDA, int32_t, float>(
Israt Nisa's avatar
Israt Nisa committed
472
473
    const NDArray A, const NDArray B, NDArray C,
    const NDArray seglen_A, bool a_trans, bool b_trans);
474
475
476
477
478
479
480
template void SegmentMM<kDGLCUDA, int64_t, float>(
    const NDArray A, const NDArray B, NDArray C,
    const NDArray seglen_A, bool a_trans, bool b_trans);
template void SegmentMM<kDGLCUDA, int32_t, double>(
    const NDArray A, const NDArray B, NDArray C,
    const NDArray seglen_A, bool a_trans, bool b_trans);
template void SegmentMM<kDGLCUDA, int64_t, double>(
Israt Nisa's avatar
Israt Nisa committed
481
482
483
    const NDArray A, const NDArray B, NDArray C,
    const NDArray seglen_A, bool a_trans, bool b_trans);

484
485
486
487
488
489
template void SegmentMMBackwardB<kDGLCUDA, int32_t, __half>(
    const NDArray A, const NDArray dC, NDArray dB, const NDArray seglen);
template void SegmentMMBackwardB<kDGLCUDA, int64_t, __half>(
    const NDArray A, const NDArray dC, NDArray dB, const NDArray seglen);
#if BF16_ENABLED
template void SegmentMMBackwardB<kDGLCUDA, int32_t, __nv_bfloat16>(
490
    const NDArray A, const NDArray dC, NDArray dB, const NDArray seglen);
491
template void SegmentMMBackwardB<kDGLCUDA, int64_t, __nv_bfloat16>(
492
    const NDArray A, const NDArray dC, NDArray dB, const NDArray seglen);
493
494
#endif  // BF16_ENABLED
template void SegmentMMBackwardB<kDGLCUDA, int32_t, float>(
495
    const NDArray A, const NDArray dC, NDArray dB, const NDArray seglen);
496
template void SegmentMMBackwardB<kDGLCUDA, int64_t, float>(
497
    const NDArray A, const NDArray dC, NDArray dB, const NDArray seglen);
498
template void SegmentMMBackwardB<kDGLCUDA, int32_t, double>(
499
    const NDArray A, const NDArray dC, NDArray dB, const NDArray seglen);
500
template void SegmentMMBackwardB<kDGLCUDA, int64_t, double>(
501
502
    const NDArray A, const NDArray dC, NDArray dB, const NDArray seglen);

Israt Nisa's avatar
Israt Nisa committed
503
504
}  // namespace aten
}  // namespace dgl