test_graph_index.py 5.77 KB
Newer Older
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
import backend as F
import networkx as nx
import numpy as np
import scipy as sp
import dgl
from dgl.graph_index import map_to_subgraph_nid, GraphIndex, create_graph_index
from dgl import utils

def generate_from_networkx():
    edges = [[2, 3], [2, 5], [3, 0], [1, 0], [4, 3], [4, 5]]
    nx_graph = nx.DiGraph()
    nx_graph.add_edges_from(edges)
    g = create_graph_index(nx_graph)
    ig = create_graph_index(nx_graph, readonly=True)
    return g, ig

def generate_from_edgelist():
    edges = [[2, 3], [2, 5], [3, 0], [6, 10], [10, 3], [10, 15]]
    g = create_graph_index(edges)
    ig = create_graph_index(edges, readonly=True)
    return g, ig

def generate_rand_graph(n):
    arr = (sp.sparse.random(n, n, density=0.1, format='coo') != 0).astype(np.int64)
    g = create_graph_index(arr)
    ig = create_graph_index(arr, readonly=True)
    return g, ig

def check_graph_equal(g1, g2):
    adj1 = g1.adjacency_matrix(False, F.cpu())[0]
    adj2 = g2.adjacency_matrix(False, F.cpu())[0]
    assert np.all(F.asnumpy(adj1) == F.asnumpy(adj2))

def test_graph_gen():
    g, ig = generate_from_edgelist()
    check_graph_equal(g, ig)
    g, ig = generate_rand_graph(10)
    check_graph_equal(g, ig)

def sort_edges(edges):
    edges = [e.tousertensor() for e in edges]
    if np.prod(edges[2].shape) > 0:
        val, idx = F.sort_1d(edges[2])
        return (edges[0][idx], edges[1][idx], edges[2][idx])
    else:
        return (edges[0], edges[1], edges[2])

def check_basics(g, ig):
    assert g.number_of_nodes() == ig.number_of_nodes()
    assert g.number_of_edges() == ig.number_of_edges()

    edges = g.edges("srcdst")
    iedges = ig.edges("srcdst")
    assert F.array_equal(edges[0].tousertensor(), iedges[0].tousertensor())
    assert F.array_equal(edges[1].tousertensor(), iedges[1].tousertensor())
    assert F.array_equal(edges[2].tousertensor(), iedges[2].tousertensor())

    edges = g.edges("eid")
    iedges = ig.edges("eid")
    assert F.array_equal(edges[0].tousertensor(), iedges[0].tousertensor())
    assert F.array_equal(edges[1].tousertensor(), iedges[1].tousertensor())
    assert F.array_equal(edges[2].tousertensor(), iedges[2].tousertensor())

    for i in range(g.number_of_nodes()):
        assert g.has_node(i) == ig.has_node(i)

    for i in range(g.number_of_nodes()):
        assert F.array_equal(g.predecessors(i).tousertensor(), ig.predecessors(i).tousertensor())
        assert F.array_equal(g.successors(i).tousertensor(), ig.successors(i).tousertensor())

    randv = np.random.randint(0, g.number_of_nodes(), 10)
    randv = utils.toindex(randv)
    in_src1, in_dst1, in_eids1 = sort_edges(g.in_edges(randv))
    in_src2, in_dst2, in_eids2 = sort_edges(ig.in_edges(randv))
    nnz = in_src2.shape[0]
    assert F.array_equal(in_src1, in_src2)
    assert F.array_equal(in_dst1, in_dst2)
    assert F.array_equal(in_eids1, in_eids2)

    out_src1, out_dst1, out_eids1 = sort_edges(g.out_edges(randv))
    out_src2, out_dst2, out_eids2 = sort_edges(ig.out_edges(randv))
    nnz = out_dst2.shape[0]
    assert F.array_equal(out_dst1, out_dst2)
    assert F.array_equal(out_src1, out_src2)
    assert F.array_equal(out_eids1, out_eids2)

    num_v = len(randv)
    assert F.array_equal(g.in_degrees(randv).tousertensor(), ig.in_degrees(randv).tousertensor())
    assert F.array_equal(g.out_degrees(randv).tousertensor(), ig.out_degrees(randv).tousertensor())
    randv = randv.tousertensor()
    for v in F.asnumpy(randv):
        assert g.in_degree(v) == ig.in_degree(v)
        assert g.out_degree(v) == ig.out_degree(v)

    for u in F.asnumpy(randv):
        for v in F.asnumpy(randv):
            if len(g.edge_id(u, v)) == 1:
                assert g.edge_id(u, v).tonumpy() == ig.edge_id(u, v).tonumpy()
            assert g.has_edge_between(u, v) == ig.has_edge_between(u, v)
    randv = utils.toindex(randv)
    ids = g.edge_ids(randv, randv)[2].tonumpy()
    assert sum(ig.edge_ids(randv, randv)[2].tonumpy() == ids, 0) == len(ids)
    assert sum(g.has_edges_between(randv, randv).tonumpy() == ig.has_edges_between(randv, randv).tonumpy(), 0) == len(randv)


def test_basics():
    g, ig = generate_from_edgelist()
    check_basics(g, ig)
    g, ig = generate_from_networkx()
    check_basics(g, ig)
    g, ig = generate_rand_graph(100)
    check_basics(g, ig)

def test_node_subgraph():
    num_vertices = 100
    g, ig = generate_rand_graph(num_vertices)

    # node_subgraph
    randv1 = np.random.randint(0, num_vertices, 20)
    randv = np.unique(randv1)
    subg = g.node_subgraph(utils.toindex(randv))
    subig = ig.node_subgraph(utils.toindex(randv))
    check_basics(subg, subig)
    check_graph_equal(subg, subig)
    assert F.sum(map_to_subgraph_nid(subg, utils.toindex(randv1[0:10])).tousertensor()
            == map_to_subgraph_nid(subig, utils.toindex(randv1[0:10])).tousertensor(), 0) == 10

    # node_subgraphs
    randvs = []
    subgs = []
    for i in range(4):
        randv = np.unique(np.random.randint(0, num_vertices, 20))
        randvs.append(utils.toindex(randv))
        subgs.append(g.node_subgraph(utils.toindex(randv)))
    subigs= ig.node_subgraphs(randvs)
    for i in range(4):
        check_basics(subg, subig)
        check_graph_equal(subgs[i], subigs[i])

def test_create_graph():
    elist = [(1, 2), (0, 1), (0, 2)]
    ig = dgl.DGLGraph(elist, readonly=True)
    g = dgl.DGLGraph(elist, readonly=False)
    for edge in elist:
        assert g.edge_id(edge[0], edge[1]) == ig.edge_id(edge[0], edge[1])

    data = [1, 2, 3]
    rows = [1, 0, 0]
    cols = [2, 1, 2]
    mat = sp.sparse.coo_matrix((data, (rows, cols)))
    g = dgl.DGLGraph(mat, readonly=False)
    ig = dgl.DGLGraph(mat, readonly=True)
    for edge in elist:
        assert g.edge_id(edge[0], edge[1]) == ig.edge_id(edge[0], edge[1])

if __name__ == '__main__':
    test_basics()
    test_graph_gen()
    test_node_subgraph()
    test_create_graph()