test_nn.py 16.5 KB
Newer Older
1
2
3
import mxnet as mx
import networkx as nx
import numpy as np
Minjie Wang's avatar
Minjie Wang committed
4
import scipy as sp
5
6
import dgl
import dgl.nn.mxnet as nn
7
import dgl.function as fn
8
import backend as F
Minjie Wang's avatar
Minjie Wang committed
9
from mxnet import autograd, gluon, nd
10

11
12
def check_close(a, b):
    assert np.allclose(a.asnumpy(), b.asnumpy(), rtol=1e-4, atol=1e-4)
13
14
15
16
17
18
19
20

def _AXWb(A, X, W, b):
    X = mx.nd.dot(X, W.data(X.context))
    Y = mx.nd.dot(A, X.reshape(X.shape[0], -1)).reshape(X.shape)
    return Y + b.data(X.context)

def test_graph_conv():
    g = dgl.DGLGraph(nx.path_graph(3))
21
22
    ctx = F.ctx()
    adj = g.adjacency_matrix(ctx=ctx)
23
24
25
26

    conv = nn.GraphConv(5, 2, norm=False, bias=True)
    conv.initialize(ctx=ctx)
    # test#1: basic
27
    h0 = F.ones((3, 5))
28
    h1 = conv(g, h0)
29
30
    assert len(g.ndata) == 0
    assert len(g.edata) == 0
31
    check_close(h1, _AXWb(adj, h0, conv.weight, conv.bias))
32
    # test#2: more-dim
33
    h0 = F.ones((3, 5, 5))
34
    h1 = conv(g, h0)
35
36
    assert len(g.ndata) == 0
    assert len(g.edata) == 0
37
    check_close(h1, _AXWb(adj, h0, conv.weight, conv.bias))
38
39
40
41
42

    conv = nn.GraphConv(5, 2)
    conv.initialize(ctx=ctx)

    # test#3: basic
43
    h0 = F.ones((3, 5))
44
    h1 = conv(g, h0)
45
46
    assert len(g.ndata) == 0
    assert len(g.edata) == 0
47
    # test#4: basic
48
    h0 = F.ones((3, 5, 5))
49
    h1 = conv(g, h0)
50
51
    assert len(g.ndata) == 0
    assert len(g.edata) == 0
52
53
54
55
56
57

    conv = nn.GraphConv(5, 2)
    conv.initialize(ctx=ctx)

    with autograd.train_mode():
        # test#3: basic
58
        h0 = F.ones((3, 5))
59
        h1 = conv(g, h0)
60
61
        assert len(g.ndata) == 0
        assert len(g.edata) == 0
62
        # test#4: basic
63
        h0 = F.ones((3, 5, 5))
64
        h1 = conv(g, h0)
65
66
        assert len(g.ndata) == 0
        assert len(g.edata) == 0
67

68
    # test not override features
69
    g.ndata["h"] = 2 * F.ones((3, 1))
70
    h1 = conv(g, h0)
71
72
73
    assert len(g.ndata) == 1
    assert len(g.edata) == 0
    assert "h" in g.ndata
74
    check_close(g.ndata['h'], 2 * F.ones((3, 1)))
75

76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
def _S2AXWb(A, N, X, W, b):
    X1 = X * N
    X1 = mx.nd.dot(A, X1.reshape(X1.shape[0], -1))
    X1 = X1 * N
    X2 = X1 * N
    X2 = mx.nd.dot(A, X2.reshape(X2.shape[0], -1))
    X2 = X2 * N
    X = mx.nd.concat(X, X1, X2, dim=-1)
    Y = mx.nd.dot(X, W)

    return Y + b

def test_tagconv():
    g = dgl.DGLGraph(nx.path_graph(3))
    ctx = F.ctx()
    adj = g.adjacency_matrix(ctx=ctx)
    norm = mx.nd.power(g.in_degrees().astype('float32'), -0.5)

    conv = nn.TAGConv(5, 2, bias=True)
    conv.initialize(ctx=ctx)
    print(conv)

    # test#1: basic
    h0 = F.ones((3, 5))
    h1 = conv(g, h0)
    assert len(g.ndata) == 0
    assert len(g.edata) == 0
    shp = norm.shape + (1,) * (h0.ndim - 1)
    norm = norm.reshape(shp).as_in_context(h0.context)

    assert F.allclose(h1, _S2AXWb(adj, norm, h0, conv.lin.data(ctx), conv.h_bias.data(ctx)))

    conv = nn.TAGConv(5, 2)
    conv.initialize(ctx=ctx)

    # test#2: basic
    h0 = F.ones((3, 5))
    h1 = conv(g, h0)
    assert h1.shape[-1] == 2

116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
def test_gat_conv():
    g = dgl.DGLGraph(nx.erdos_renyi_graph(20, 0.3))
    ctx = F.ctx()

    gat = nn.GATConv(10, 20, 5) # n_heads = 5
    gat.initialize(ctx=ctx)
    print(gat)

    # test#1: basic
    h0 = F.randn((20, 10))
    h1 = gat(g, h0)
    assert h1.shape == (20, 5, 20)

def test_sage_conv():
    g = dgl.DGLGraph(nx.erdos_renyi_graph(20, 0.3))
    ctx = F.ctx()

    graphsage = nn.SAGEConv(10, 20)
    graphsage.initialize(ctx=ctx)
    print(graphsage)

    # test#1: basic
    h0 = F.randn((20, 10))
    h1 = graphsage(g, h0)
    assert h1.shape == (20, 20)

def test_gg_conv():
    g = dgl.DGLGraph(nx.erdos_renyi_graph(20, 0.3))
    ctx = F.ctx()

    gg_conv = nn.GatedGraphConv(10, 20, 3, 4) # n_step = 3, n_etypes = 4
    gg_conv.initialize(ctx=ctx)
    print(gg_conv)

    # test#1: basic
    h0 = F.randn((20, 10))
    etypes = nd.random.randint(0, 4, g.number_of_edges()).as_in_context(ctx)
    h1 = gg_conv(g, h0, etypes)
    assert h1.shape == (20, 20)

def test_cheb_conv():
    g = dgl.DGLGraph(nx.erdos_renyi_graph(20, 0.3))
    ctx = F.ctx()

    cheb = nn.ChebConv(10, 20, 3) # k = 3
    cheb.initialize(ctx=ctx)
    print(cheb)

    # test#1: basic
    h0 = F.randn((20, 10))
    h1 = cheb(g, h0)
    assert h1.shape == (20, 20)

def test_agnn_conv():
    g = dgl.DGLGraph(nx.erdos_renyi_graph(20, 0.3))
    ctx = F.ctx()

    agnn_conv = nn.AGNNConv(0.1, True)
    agnn_conv.initialize(ctx=ctx)
    print(agnn_conv)

    # test#1: basic
    h0 = F.randn((20, 10))
    h1 = agnn_conv(g, h0)
    assert h1.shape == (20, 10)

def test_appnp_conv():
    g = dgl.DGLGraph(nx.erdos_renyi_graph(20, 0.3))
    ctx = F.ctx()

    appnp_conv = nn.APPNPConv(3, 0.1, 0)
    appnp_conv.initialize(ctx=ctx)
    print(appnp_conv)

    # test#1: basic
    h0 = F.randn((20, 10))
    h1 = appnp_conv(g, h0)
    assert h1.shape == (20, 10)

def test_dense_cheb_conv():
    for k in range(1, 4):
        ctx = F.ctx()
        g = dgl.DGLGraph(sp.sparse.random(100, 100, density=0.3), readonly=True)
        adj = g.adjacency_matrix(ctx=ctx).tostype('default')
        cheb = nn.ChebConv(5, 2, k)
        dense_cheb = nn.DenseChebConv(5, 2, k)
        cheb.initialize(ctx=ctx)
        dense_cheb.initialize(ctx=ctx)

        for i in range(len(cheb.fc)):
            dense_cheb.fc[i].weight.set_data(
                cheb.fc[i].weight.data())
            if cheb.bias is not None:
                dense_cheb.bias.set_data(
                    cheb.bias.data())

        feat = F.randn((100, 5))
        out_cheb = cheb(g, feat, [2.0])
        out_dense_cheb = dense_cheb(adj, feat, 2.0)
        assert F.allclose(out_cheb, out_dense_cheb)

def test_dense_graph_conv():
    ctx = F.ctx()
    g = dgl.DGLGraph(sp.sparse.random(100, 100, density=0.3), readonly=True)
    adj = g.adjacency_matrix(ctx=ctx).tostype('default')
    conv = nn.GraphConv(5, 2, norm=False, bias=True)
    dense_conv = nn.DenseGraphConv(5, 2, norm=False, bias=True)
    conv.initialize(ctx=ctx)
    dense_conv.initialize(ctx=ctx)
    dense_conv.weight.set_data(
        conv.weight.data())
    dense_conv.bias.set_data(
        conv.bias.data())
    feat = F.randn((100, 5))

    out_conv = conv(g, feat)
    out_dense_conv = dense_conv(adj, feat)
    assert F.allclose(out_conv, out_dense_conv)

def test_dense_sage_conv():
    ctx = F.ctx()
    g = dgl.DGLGraph(sp.sparse.random(100, 100, density=0.1), readonly=True)
    adj = g.adjacency_matrix(ctx=ctx).tostype('default')
    sage = nn.SAGEConv(5, 2, 'gcn')
    dense_sage = nn.DenseSAGEConv(5, 2)
    sage.initialize(ctx=ctx)
    dense_sage.initialize(ctx=ctx)
    dense_sage.fc.weight.set_data(
        sage.fc_neigh.weight.data())
    dense_sage.fc.bias.set_data(
        sage.fc_neigh.bias.data())
    feat = F.randn((100, 5))

    out_sage = sage(g, feat)
    out_dense_sage = dense_sage(adj, feat)
    assert F.allclose(out_sage, out_dense_sage)

def test_edge_conv():
    g = dgl.DGLGraph(nx.erdos_renyi_graph(20, 0.3))
    ctx = F.ctx()

    edge_conv = nn.EdgeConv(5, 2)
    edge_conv.initialize(ctx=ctx)
    print(edge_conv)

    # test #1: basic
    h0 = F.randn((g.number_of_nodes(), 5))
    h1 = edge_conv(g, h0)
    assert h1.shape == (g.number_of_nodes(), 2)

def test_gin_conv():
    g = dgl.DGLGraph(nx.erdos_renyi_graph(20, 0.3))
    ctx = F.ctx()

    gin_conv = nn.GINConv(lambda x: x, 'mean', 0.1)
    gin_conv.initialize(ctx=ctx)
    print(gin_conv)

    # test #1: basic
    h0 = F.randn((g.number_of_nodes(), 5))
    h1 = gin_conv(g, h0)
    assert h1.shape == (g.number_of_nodes(), 5)

def test_gmm_conv():
    g = dgl.DGLGraph(nx.erdos_renyi_graph(20, 0.3))
    ctx = F.ctx()

    gmm_conv = nn.GMMConv(5, 2, 5, 3, 'max')
    gmm_conv.initialize(ctx=ctx)
    print(gmm_conv)

    # test #1: basic
    h0 = F.randn((g.number_of_nodes(), 5))
    pseudo = F.randn((g.number_of_edges(), 5))
    h1 = gmm_conv(g, h0, pseudo)
    assert h1.shape == (g.number_of_nodes(), 2)

def test_nn_conv():
    g = dgl.DGLGraph(nx.erdos_renyi_graph(20, 0.3))
    ctx = F.ctx()

    nn_conv = nn.NNConv(5, 2, gluon.nn.Embedding(3, 5 * 2), 'max')
    nn_conv.initialize(ctx=ctx)
    print(nn_conv)

    # test #1: basic
    h0 = F.randn((g.number_of_nodes(), 5))
    etypes = nd.random.randint(0, 4, g.number_of_edges()).as_in_context(ctx)
    h1 = nn_conv(g, h0, etypes)
    assert h1.shape == (g.number_of_nodes(), 2)

def test_sg_conv():
    g = dgl.DGLGraph(nx.erdos_renyi_graph(20, 0.3))
    ctx = F.ctx()

    sgc = nn.SGConv(5, 2, 2)
    sgc.initialize(ctx=ctx)
    print(sgc)

    # test #1: basic
    h0 = F.randn((g.number_of_nodes(), 5))
    h1 = sgc(g, h0)
    assert h1.shape == (g.number_of_nodes(), 2)

320
321
def test_set2set():
    g = dgl.DGLGraph(nx.path_graph(10))
322
    ctx = F.ctx()
323
324

    s2s = nn.Set2Set(5, 3, 3) # hidden size 5, 3 iters, 3 layers
325
    s2s.initialize(ctx=ctx)
326
327
328
    print(s2s)

    # test#1: basic
329
    h0 = F.randn((g.number_of_nodes(), 5))
330
    h1 = s2s(g, h0)
331
    assert h1.shape[0] == 1 and h1.shape[1] == 10 and h1.ndim == 2
332
333
334

    # test#2: batched graph
    bg = dgl.batch([g, g, g])
335
    h0 = F.randn((bg.number_of_nodes(), 5))
336
    h1 = s2s(bg, h0)
337
338
339
340
    assert h1.shape[0] == 3 and h1.shape[1] == 10 and h1.ndim == 2

def test_glob_att_pool():
    g = dgl.DGLGraph(nx.path_graph(10))
341
    ctx = F.ctx()
342
343

    gap = nn.GlobalAttentionPooling(gluon.nn.Dense(1), gluon.nn.Dense(10))
344
    gap.initialize(ctx=ctx)
345
346
    print(gap)
    # test#1: basic
347
    h0 = F.randn((g.number_of_nodes(), 5))
348
    h1 = gap(g, h0)
349
    assert h1.shape[0] == 1 and h1.shape[1] == 10 and h1.ndim == 2
350
351
352

    # test#2: batched graph
    bg = dgl.batch([g, g, g, g])
353
    h0 = F.randn((bg.number_of_nodes(), 5))
354
    h1 = gap(bg, h0)
355
356
357
358
359
360
361
362
363
364
365
366
    assert h1.shape[0] == 4 and h1.shape[1] == 10 and h1.ndim == 2

def test_simple_pool():
    g = dgl.DGLGraph(nx.path_graph(15))

    sum_pool = nn.SumPooling()
    avg_pool = nn.AvgPooling()
    max_pool = nn.MaxPooling()
    sort_pool = nn.SortPooling(10) # k = 10
    print(sum_pool, avg_pool, max_pool, sort_pool)

    # test#1: basic
367
    h0 = F.randn((g.number_of_nodes(), 5))
368
    h1 = sum_pool(g, h0)
369
    check_close(F.squeeze(h1, 0), F.sum(h0, 0))
370
    h1 = avg_pool(g, h0)
371
    check_close(F.squeeze(h1, 0), F.mean(h0, 0))
372
    h1 = max_pool(g, h0)
373
    check_close(F.squeeze(h1, 0), F.max(h0, 0))
374
    h1 = sort_pool(g, h0)
375
    assert h1.shape[0] == 1 and h1.shape[1] == 10 * 5 and h1.ndim == 2
376
377
378
379

    # test#2: batched graph
    g_ = dgl.DGLGraph(nx.path_graph(5))
    bg = dgl.batch([g, g_, g, g_, g])
380
    h0 = F.randn((bg.number_of_nodes(), 5))
381
    h1 = sum_pool(bg, h0)
382
383
384
385
386
    truth = mx.nd.stack(F.sum(h0[:15], 0),
                        F.sum(h0[15:20], 0),
                        F.sum(h0[20:35], 0),
                        F.sum(h0[35:40], 0),
                        F.sum(h0[40:55], 0), axis=0)
387
388
    check_close(h1, truth)

389
    h1 = avg_pool(bg, h0)
390
391
392
393
394
    truth = mx.nd.stack(F.mean(h0[:15], 0),
                        F.mean(h0[15:20], 0),
                        F.mean(h0[20:35], 0),
                        F.mean(h0[35:40], 0),
                        F.mean(h0[40:55], 0), axis=0)
395
396
    check_close(h1, truth)

397
    h1 = max_pool(bg, h0)
398
399
400
401
402
    truth = mx.nd.stack(F.max(h0[:15], 0),
                        F.max(h0[15:20], 0),
                        F.max(h0[20:35], 0),
                        F.max(h0[35:40], 0),
                        F.max(h0[40:55], 0), axis=0)
403
404
    check_close(h1, truth)

405
    h1 = sort_pool(bg, h0)
406
407
    assert h1.shape[0] == 5 and h1.shape[1] == 10 * 5 and h1.ndim == 2

408
409
410
411
412
413
414
415
def uniform_attention(g, shape):
    a = mx.nd.ones(shape)
    target_shape = (g.number_of_edges(),) + (1,) * (len(shape) - 1)
    return a / g.in_degrees(g.edges()[1]).reshape(target_shape).astype('float32')

def test_edge_softmax():
    # Basic
    g = dgl.DGLGraph(nx.path_graph(3))
416
    edata = F.ones((g.number_of_edges(), 1))
417
    a = nn.edge_softmax(g, edata)
418
419
    assert len(g.ndata) == 0
    assert len(g.edata) == 0
420
421
422
423
    assert np.allclose(a.asnumpy(), uniform_attention(g, a.shape).asnumpy(),
            1e-4, 1e-4)

    # Test higher dimension case
424
    edata = F.ones((g.number_of_edges(), 3, 1))
425
    a = nn.edge_softmax(g, edata)
426
427
    assert len(g.ndata) == 0
    assert len(g.edata) == 0
428
429
430
    assert np.allclose(a.asnumpy(), uniform_attention(g, a.shape).asnumpy(),
            1e-4, 1e-4)

431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
def test_partial_edge_softmax():
    g = dgl.DGLGraph()
    g.add_nodes(30)
    # build a complete graph
    for i in range(30):
        for j in range(30):
            g.add_edge(i, j)

    score = F.randn((300, 1))
    score.attach_grad()
    grad = F.randn((300, 1))
    import numpy as np
    eids = np.random.choice(900, 300, replace=False).astype('int64')
    eids = F.zerocopy_from_numpy(eids)
    # compute partial edge softmax
    with mx.autograd.record():
        y_1 = nn.edge_softmax(g, score, eids)
        y_1.backward(grad)
        grad_1 = score.grad

    # compute edge softmax on edge subgraph
    subg = g.edge_subgraph(eids)
    with mx.autograd.record():
        y_2 = nn.edge_softmax(subg, score)
        y_2.backward(grad)
        grad_2 = score.grad

    assert F.allclose(y_1, y_2)
    assert F.allclose(grad_1, grad_2)

Minjie Wang's avatar
Minjie Wang committed
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
def test_rgcn():
    ctx = F.ctx()
    etype = []
    g = dgl.DGLGraph(sp.sparse.random(100, 100, density=0.1), readonly=True)
    # 5 etypes
    R = 5
    for i in range(g.number_of_edges()):
        etype.append(i % 5)
    B = 2
    I = 10
    O = 8

    rgc_basis = nn.RelGraphConv(I, O, R, "basis", B)
    rgc_basis.initialize(ctx=ctx)
    h = nd.random.randn(100, I, ctx=ctx)
    r = nd.array(etype, ctx=ctx)
    h_new = rgc_basis(g, h, r)
    assert list(h_new.shape) == [100, O]

    rgc_bdd = nn.RelGraphConv(I, O, R, "bdd", B)
    rgc_bdd.initialize(ctx=ctx)
    h = nd.random.randn(100, I, ctx=ctx)
    r = nd.array(etype, ctx=ctx)
    h_new = rgc_bdd(g, h, r)
    assert list(h_new.shape) == [100, O]

    # with norm
    norm = nd.zeros((g.number_of_edges(), 1), ctx=ctx)

    rgc_basis = nn.RelGraphConv(I, O, R, "basis", B)
    rgc_basis.initialize(ctx=ctx)
    h = nd.random.randn(100, I, ctx=ctx)
    r = nd.array(etype, ctx=ctx)
    h_new = rgc_basis(g, h, r, norm)
    assert list(h_new.shape) == [100, O]

    rgc_bdd = nn.RelGraphConv(I, O, R, "bdd", B)
    rgc_bdd.initialize(ctx=ctx)
    h = nd.random.randn(100, I, ctx=ctx)
    r = nd.array(etype, ctx=ctx)
    h_new = rgc_bdd(g, h, r, norm)
    assert list(h_new.shape) == [100, O]

    # id input
    rgc_basis = nn.RelGraphConv(I, O, R, "basis", B)
    rgc_basis.initialize(ctx=ctx)
    h = nd.random.randint(0, I, (100,), ctx=ctx)
    r = nd.array(etype, ctx=ctx)
    h_new = rgc_basis(g, h, r)
    assert list(h_new.shape) == [100, O]

512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
def test_sequential():
    ctx = F.ctx()
    # test single graph
    class ExampleLayer(gluon.nn.Block):
        def __init__(self, **kwargs):
            super().__init__(**kwargs)

        def forward(self, graph, n_feat, e_feat):
            graph = graph.local_var()
            graph.ndata['h'] = n_feat
            graph.update_all(fn.copy_u('h', 'm'), fn.sum('m', 'h'))
            n_feat += graph.ndata['h']
            graph.apply_edges(fn.u_add_v('h', 'h', 'e'))
            e_feat += graph.edata['e']
            return n_feat, e_feat

    g = dgl.DGLGraph()
    g.add_nodes(3)
    g.add_edges([0, 1, 2, 0, 1, 2, 0, 1, 2], [0, 0, 0, 1, 1, 1, 2, 2, 2])
    net = nn.Sequential()
    net.add(ExampleLayer())
    net.add(ExampleLayer())
    net.add(ExampleLayer())
    net.initialize(ctx=ctx)
    n_feat = F.randn((3, 4))
    e_feat = F.randn((9, 4))
    n_feat, e_feat = net(g, n_feat, e_feat)
    assert n_feat.shape == (3, 4)
    assert e_feat.shape == (9, 4)

    # test multiple graphs
    class ExampleLayer(gluon.nn.Block):
        def __init__(self, **kwargs):
            super().__init__(**kwargs)

        def forward(self, graph, n_feat):
            graph = graph.local_var()
            graph.ndata['h'] = n_feat
            graph.update_all(fn.copy_u('h', 'm'), fn.sum('m', 'h'))
            n_feat += graph.ndata['h']
            return n_feat.reshape(graph.number_of_nodes() // 2, 2, -1).sum(1)

    g1 = dgl.DGLGraph(nx.erdos_renyi_graph(32, 0.05))
    g2 = dgl.DGLGraph(nx.erdos_renyi_graph(16, 0.2))
    g3 = dgl.DGLGraph(nx.erdos_renyi_graph(8, 0.8))
    net = nn.Sequential()
    net.add(ExampleLayer())
    net.add(ExampleLayer())
    net.add(ExampleLayer())
    net.initialize(ctx=ctx)
    n_feat = F.randn((32, 4))
    n_feat = net([g1, g2, g3], n_feat)
    assert n_feat.shape == (4, 4)

566
567
if __name__ == '__main__':
    test_graph_conv()
568
569
570
571
572
573
574
575
576
577
578
579
580
581
    test_gat_conv()
    test_sage_conv()
    test_gg_conv()
    test_cheb_conv()
    test_agnn_conv()
    test_appnp_conv()
    test_dense_cheb_conv()
    test_dense_graph_conv()
    test_dense_sage_conv()
    test_edge_conv()
    test_gin_conv()
    test_gmm_conv()
    test_nn_conv()
    test_sg_conv()
582
    test_edge_softmax()
583
    test_partial_edge_softmax()
584
585
586
    test_set2set()
    test_glob_att_pool()
    test_simple_pool()
Minjie Wang's avatar
Minjie Wang committed
587
    test_rgcn()
588
    test_sequential()