sgc.py 3.87 KB
Newer Older
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
"""
This code was modified from the GCN implementation in DGL examples.
Simplifying Graph Convolutional Networks
Paper: https://arxiv.org/abs/1902.07153
Code: https://github.com/Tiiiger/SGC
SGC implementation in DGL.
"""
import argparse, time, math
import numpy as np
import torch
import torch.nn as nn
import torch.nn.functional as F
import dgl.function as fn
from dgl import DGLGraph
from dgl.data import register_data_args, load_data
16
from dgl.nn.pytorch.conv import SGConv
17

18
19

def evaluate(model, g, features, labels, mask):
20
21
    model.eval()
    with torch.no_grad():
22
        logits = model(g, features)[mask] # only compute the evaluation set
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
        labels = labels[mask]
        _, indices = torch.max(logits, dim=1)
        correct = torch.sum(indices == labels)
        return correct.item() * 1.0 / len(labels)

def main(args):
    # load and preprocess dataset
    data = load_data(args)
    features = torch.FloatTensor(data.features)
    labels = torch.LongTensor(data.labels)
    train_mask = torch.ByteTensor(data.train_mask)
    val_mask = torch.ByteTensor(data.val_mask)
    test_mask = torch.ByteTensor(data.test_mask)
    in_feats = features.shape[1]
    n_classes = data.num_labels
    n_edges = data.graph.number_of_edges()
    print("""----Data statistics------'
      #Edges %d
      #Classes %d
      #Train samples %d
      #Val samples %d
      #Test samples %d""" %
          (n_edges, n_classes,
              train_mask.sum().item(),
              val_mask.sum().item(),
              test_mask.sum().item()))

    if args.gpu < 0:
        cuda = False
    else:
        cuda = True
        torch.cuda.set_device(args.gpu)
        features = features.cuda()
        labels = labels.cuda()
        train_mask = train_mask.cuda()
        val_mask = val_mask.cuda()
        test_mask = test_mask.cuda()

    # graph preprocess and calculate normalization factor
    g = DGLGraph(data.graph)
    n_edges = g.number_of_edges()
    # add self loop
    g.add_edges(g.nodes(), g.nodes())

    # create SGC model
68
69
70
71
72
    model = SGConv(in_feats,
                   n_classes,
                   k=2,
                   cached=True,
                   bias=args.bias)
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88

    if cuda: model.cuda()
    loss_fcn = torch.nn.CrossEntropyLoss()

    # use optimizer
    optimizer = torch.optim.Adam(model.parameters(),
                                 lr=args.lr,
                                 weight_decay=args.weight_decay)

    # initialize graph
    dur = []
    for epoch in range(args.n_epochs):
        model.train()
        if epoch >= 3:
            t0 = time.time()
        # forward
89
        logits = model(g, features) # only compute the train set
90
        loss = loss_fcn(logits[train_mask], labels[train_mask])
91
92
93
94
95
96
97
98

        optimizer.zero_grad()
        loss.backward()
        optimizer.step()

        if epoch >= 3:
            dur.append(time.time() - t0)

99
        acc = evaluate(model, g, features, labels, val_mask)
100
101
102
103
104
        print("Epoch {:05d} | Time(s) {:.4f} | Loss {:.4f} | Accuracy {:.4f} | "
              "ETputs(KTEPS) {:.2f}". format(epoch, np.mean(dur), loss.item(),
                                             acc, n_edges / np.mean(dur) / 1000))

    print()
105
    acc = evaluate(model, g, features, labels, test_mask)
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
    print("Test Accuracy {:.4f}".format(acc))


if __name__ == '__main__':
    parser = argparse.ArgumentParser(description='SGC')
    register_data_args(parser)
    parser.add_argument("--gpu", type=int, default=-1,
            help="gpu")
    parser.add_argument("--lr", type=float, default=0.2,
            help="learning rate")
    parser.add_argument("--bias", action='store_true', default=False,
            help="flag to use bias")
    parser.add_argument("--n-epochs", type=int, default=100,
            help="number of training epochs")
    parser.add_argument("--weight-decay", type=float, default=5e-6,
            help="Weight for L2 loss")
    args = parser.parse_args()
    print(args)

    main(args)