models.py 4.13 KB
Newer Older
Ereboas's avatar
Ereboas committed
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
import math

import torch
import torch.nn.functional as F
from dgl.nn import GraphConv, SortPooling
from torch.nn import Conv1d, Embedding, Linear, MaxPool1d, ModuleList


class NGNN_GCNConv(torch.nn.Module):
    def __init__(self, input_channels, hidden_channels, output_channels):
        super(NGNN_GCNConv, self).__init__()
        self.conv = GraphConv(input_channels, hidden_channels)
        self.fc = Linear(hidden_channels, hidden_channels)
        self.fc2 = Linear(hidden_channels, output_channels)

    def reset_parameters(self):
        self.conv.reset_parameters()
        gain = torch.nn.init.calculate_gain("relu")
        torch.nn.init.xavier_uniform_(self.fc.weight, gain=gain)
        torch.nn.init.xavier_uniform_(self.fc2.weight, gain=gain)
        for bias in [self.fc.bias, self.fc2.bias]:
            stdv = 1.0 / math.sqrt(bias.size(0))
            bias.data.uniform_(-stdv, stdv)

    def forward(self, g, x, edge_weight=None):
        x = self.conv(g, x, edge_weight)
        # x = F.relu(x)
        # x = self.fc(x)
        x = F.relu(x)
        x = self.fc2(x)
        return x


# An end-to-end deep learning architecture for graph classification, AAAI-18.
class DGCNN(torch.nn.Module):
    def __init__(
        self,
        hidden_channels,
        num_layers,
        max_z,
        k,
        feature_dim=0,
        GNN=GraphConv,
        NGNN=NGNN_GCNConv,
        dropout=0.0,
        ngnn_type="all",
    ):
        super(DGCNN, self).__init__()

        self.feature_dim = feature_dim
        self.dropout = dropout

        self.k = k
        self.sort_pool = SortPooling(k=self.k)

        self.max_z = max_z
        self.z_embedding = Embedding(self.max_z, hidden_channels)

        self.convs = ModuleList()
        initial_channels = hidden_channels + self.feature_dim

        if ngnn_type in ["input", "all"]:
            self.convs.append(
                NGNN(initial_channels, hidden_channels, hidden_channels)
            )
        else:
            self.convs.append(GNN(initial_channels, hidden_channels))

        if ngnn_type in ["hidden", "all"]:
            for _ in range(0, num_layers - 1):
                self.convs.append(
                    NGNN(hidden_channels, hidden_channels, hidden_channels)
                )
        else:
            for _ in range(0, num_layers - 1):
                self.convs.append(GNN(hidden_channels, hidden_channels))

        if ngnn_type in ["output", "all"]:
            self.convs.append(NGNN(hidden_channels, hidden_channels, 1))
        else:
            self.convs.append(GNN(hidden_channels, 1))

        conv1d_channels = [16, 32]
        total_latent_dim = hidden_channels * num_layers + 1
        conv1d_kws = [total_latent_dim, 5]
        self.conv1 = Conv1d(1, conv1d_channels[0], conv1d_kws[0], conv1d_kws[0])
        self.maxpool1d = MaxPool1d(2, 2)
        self.conv2 = Conv1d(
            conv1d_channels[0], conv1d_channels[1], conv1d_kws[1], 1
        )
        dense_dim = int((self.k - 2) / 2 + 1)
        dense_dim = (dense_dim - conv1d_kws[1] + 1) * conv1d_channels[1]
        self.lin1 = Linear(dense_dim, 128)
        self.lin2 = Linear(128, 1)

    def forward(self, g, z, x=None, edge_weight=None):
        z_emb = self.z_embedding(z)
        if z_emb.ndim == 3:  # in case z has multiple integer labels
            z_emb = z_emb.sum(dim=1)
        if x is not None:
            x = torch.cat([z_emb, x.to(torch.float)], 1)
        else:
            x = z_emb
        xs = [x]

        for conv in self.convs:
            xs += [
                F.dropout(
                    torch.tanh(conv(g, xs[-1], edge_weight=edge_weight)),
                    p=self.dropout,
                    training=self.training,
                )
            ]
        x = torch.cat(xs[1:], dim=-1)

        # global pooling
        x = self.sort_pool(g, x)
        x = x.unsqueeze(1)  # [num_graphs, 1, k * hidden]
        x = F.relu(self.conv1(x))
        x = self.maxpool1d(x)
        x = F.relu(self.conv2(x))
        x = x.view(x.size(0), -1)  # [num_graphs, dense_dim]

        # MLP.
        x = F.relu(self.lin1(x))
        x = F.dropout(x, p=0.5, training=self.training)
        x = self.lin2(x)
        return x