test_integration.py 8.86 KB
Newer Older
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
import dgl
import dgl.graphbolt as gb
import dgl.sparse as dglsp
import torch


def test_integration_link_prediction():
    torch.manual_seed(926)

    indptr = torch.tensor([0, 0, 1, 3, 6, 8, 10])
    indices = torch.tensor([5, 3, 3, 3, 3, 4, 4, 0, 5, 4])

    matrix_a = dglsp.from_csc(indptr, indices)
    node_pairs = torch.t(torch.stack(matrix_a.coo()))
    node_feature_data = torch.tensor(
        [
            [0.9634, 0.2294],
            [0.6172, 0.7865],
            [0.2109, 0.1089],
            [0.8672, 0.2276],
            [0.5503, 0.8223],
            [0.5160, 0.2486],
        ]
    )
    edge_feature_data = torch.tensor(
        [
            [0.5123, 0.1709, 0.6150],
            [0.1476, 0.1902, 0.1314],
            [0.2582, 0.5203, 0.6228],
            [0.3708, 0.7631, 0.2683],
            [0.2126, 0.7878, 0.7225],
            [0.7885, 0.3414, 0.5485],
            [0.4088, 0.8200, 0.1851],
            [0.0056, 0.9469, 0.4432],
            [0.8972, 0.7511, 0.3617],
            [0.5773, 0.2199, 0.3366],
        ]
    )

    item_set = gb.ItemSet(node_pairs, names="node_pairs")
41
    graph = gb.from_fused_csc(indptr, indices)
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57

    node_feature = gb.TorchBasedFeature(node_feature_data)
    edge_feature = gb.TorchBasedFeature(edge_feature_data)
    features = {
        ("node", None, "feat"): node_feature,
        ("edge", None, "feat"): edge_feature,
    }
    feature_store = gb.BasicFeatureStore(features)
    datapipe = gb.ItemSampler(item_set, batch_size=4)
    datapipe = datapipe.sample_uniform_negative(graph, 1)
    fanouts = torch.LongTensor([1])
    datapipe = datapipe.sample_neighbor(graph, [fanouts, fanouts], replace=True)
    datapipe = datapipe.transform(gb.exclude_seed_edges)
    datapipe = datapipe.fetch_feature(
        feature_store, node_feature_keys=["feat"], edge_feature_keys=["feat"]
    )
58
    datapipe = datapipe.to_dgl()
59
60
61
62
63
    dataloader = gb.SingleProcessDataLoader(
        datapipe,
    )
    expected = [
        str(
64
65
66
67
68
69
70
71
72
73
            """DGLMiniBatch(positive_node_pairs=(tensor([0, 1, 1, 1]), tensor([2, 3, 3, 1])),
             output_nodes=None,
             node_features={'feat': tensor([[0.5160, 0.2486],
                                    [0.8672, 0.2276],
                                    [0.6172, 0.7865],
                                    [0.2109, 0.1089],
                                    [0.9634, 0.2294],
                                    [0.5503, 0.8223]])},
             negative_node_pairs=(tensor([0, 1, 1, 1]), tensor([0, 3, 4, 5])),
             labels=None,
74
             input_nodes=None,
75
76
77
78
79
80
81
82
83
             edge_features=[{},
                            {}],
             blocks=[Block(num_src_nodes=6,
                           num_dst_nodes=6,
                           num_edges=2),
                     Block(num_src_nodes=6,
                           num_dst_nodes=6,
                           num_edges=2)],
          )"""
84
85
        ),
        str(
86
87
88
89
90
91
92
93
94
            """DGLMiniBatch(positive_node_pairs=(tensor([0, 1, 1, 2]), tensor([0, 0, 1, 1])),
             output_nodes=None,
             node_features={'feat': tensor([[0.8672, 0.2276],
                                    [0.5503, 0.8223],
                                    [0.9634, 0.2294],
                                    [0.5160, 0.2486],
                                    [0.6172, 0.7865]])},
             negative_node_pairs=(tensor([0, 1, 1, 2]), tensor([1, 3, 4, 1])),
             labels=None,
95
             input_nodes=None,
96
97
98
99
100
101
102
103
104
             edge_features=[{},
                            {}],
             blocks=[Block(num_src_nodes=5,
                           num_dst_nodes=5,
                           num_edges=2),
                     Block(num_src_nodes=5,
                           num_dst_nodes=5,
                           num_edges=2)],
          )"""
105
106
        ),
        str(
107
108
109
110
111
112
113
114
            """DGLMiniBatch(positive_node_pairs=(tensor([0, 1]), tensor([0, 0])),
             output_nodes=None,
             node_features={'feat': tensor([[0.5160, 0.2486],
                                    [0.5503, 0.8223],
                                    [0.8672, 0.2276],
                                    [0.9634, 0.2294]])},
             negative_node_pairs=(tensor([0, 1]), tensor([1, 2])),
             labels=None,
115
             input_nodes=None,
116
117
118
119
120
121
122
123
124
             edge_features=[{},
                            {}],
             blocks=[Block(num_src_nodes=4,
                           num_dst_nodes=4,
                           num_edges=2),
                     Block(num_src_nodes=4,
                           num_dst_nodes=3,
                           num_edges=2)],
          )"""
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
        ),
    ]
    for step, data in enumerate(dataloader):
        assert expected[step] == str(data), print(data)


def test_integration_node_classification():
    torch.manual_seed(926)

    indptr = torch.tensor([0, 0, 1, 3, 6, 8, 10])
    indices = torch.tensor([5, 3, 3, 3, 3, 4, 4, 0, 5, 4])

    matrix_a = dglsp.from_csc(indptr, indices)
    node_pairs = torch.t(torch.stack(matrix_a.coo()))
    node_feature_data = torch.tensor(
        [
            [0.9634, 0.2294],
            [0.6172, 0.7865],
            [0.2109, 0.1089],
            [0.8672, 0.2276],
            [0.5503, 0.8223],
            [0.5160, 0.2486],
        ]
    )
    edge_feature_data = torch.tensor(
        [
            [0.5123, 0.1709, 0.6150],
            [0.1476, 0.1902, 0.1314],
            [0.2582, 0.5203, 0.6228],
            [0.3708, 0.7631, 0.2683],
            [0.2126, 0.7878, 0.7225],
            [0.7885, 0.3414, 0.5485],
            [0.4088, 0.8200, 0.1851],
            [0.0056, 0.9469, 0.4432],
            [0.8972, 0.7511, 0.3617],
            [0.5773, 0.2199, 0.3366],
        ]
    )

    item_set = gb.ItemSet(node_pairs, names="node_pairs")
165
    graph = gb.from_fused_csc(indptr, indices)
166
167
168
169
170
171
172
173
174
175
176
177
178
179

    node_feature = gb.TorchBasedFeature(node_feature_data)
    edge_feature = gb.TorchBasedFeature(edge_feature_data)
    features = {
        ("node", None, "feat"): node_feature,
        ("edge", None, "feat"): edge_feature,
    }
    feature_store = gb.BasicFeatureStore(features)
    datapipe = gb.ItemSampler(item_set, batch_size=4)
    fanouts = torch.LongTensor([1])
    datapipe = datapipe.sample_neighbor(graph, [fanouts, fanouts], replace=True)
    datapipe = datapipe.fetch_feature(
        feature_store, node_feature_keys=["feat"], edge_feature_keys=["feat"]
    )
180
    datapipe = datapipe.to_dgl()
181
182
183
184
185
    dataloader = gb.SingleProcessDataLoader(
        datapipe,
    )
    expected = [
        str(
186
187
188
189
190
191
192
193
194
195
            """DGLMiniBatch(positive_node_pairs=(tensor([0, 1, 1, 1]), tensor([2, 3, 3, 1])),
             output_nodes=None,
             node_features={'feat': tensor([[0.5160, 0.2486],
                                    [0.8672, 0.2276],
                                    [0.6172, 0.7865],
                                    [0.2109, 0.1089],
                                    [0.5503, 0.8223],
                                    [0.9634, 0.2294]])},
             negative_node_pairs=None,
             labels=None,
196
             input_nodes=None,
197
198
199
200
201
202
203
204
205
             edge_features=[{},
                            {}],
             blocks=[Block(num_src_nodes=6,
                           num_dst_nodes=5,
                           num_edges=5),
                     Block(num_src_nodes=5,
                           num_dst_nodes=4,
                           num_edges=4)],
          )"""
206
207
        ),
        str(
208
209
210
211
212
213
214
            """DGLMiniBatch(positive_node_pairs=(tensor([0, 1, 1, 2]), tensor([0, 0, 1, 1])),
             output_nodes=None,
             node_features={'feat': tensor([[0.8672, 0.2276],
                                    [0.5503, 0.8223],
                                    [0.9634, 0.2294]])},
             negative_node_pairs=None,
             labels=None,
215
             input_nodes=None,
216
217
218
219
220
221
222
223
224
             edge_features=[{},
                            {}],
             blocks=[Block(num_src_nodes=3,
                           num_dst_nodes=3,
                           num_edges=2),
                     Block(num_src_nodes=3,
                           num_dst_nodes=3,
                           num_edges=2)],
          )"""
225
226
        ),
        str(
227
228
229
230
231
232
233
            """DGLMiniBatch(positive_node_pairs=(tensor([0, 1]), tensor([0, 0])),
             output_nodes=None,
             node_features={'feat': tensor([[0.5160, 0.2486],
                                    [0.5503, 0.8223],
                                    [0.9634, 0.2294]])},
             negative_node_pairs=None,
             labels=None,
234
             input_nodes=None,
235
236
237
238
239
240
241
242
243
             edge_features=[{},
                            {}],
             blocks=[Block(num_src_nodes=3,
                           num_dst_nodes=2,
                           num_edges=2),
                     Block(num_src_nodes=2,
                           num_dst_nodes=2,
                           num_edges=2)],
          )"""
244
245
246
247
        ),
    ]
    for step, data in enumerate(dataloader):
        assert expected[step] == str(data), print(data)