fused_csc_sampling_graph.cc 47.7 KB
Newer Older
1
2
/**
 *  Copyright (c) 2023 by Contributors
3
 * @file fused_csc_sampling_graph.cc
4
5
6
 * @brief Source file of sampling graph.
 */

7
#include <graphbolt/fused_csc_sampling_graph.h>
8
#include <graphbolt/serialize.h>
9
10
#include <torch/torch.h>

11
12
#include <algorithm>
#include <array>
13
14
#include <cmath>
#include <limits>
15
#include <numeric>
16
17
#include <tuple>
#include <vector>
18

19
#include "./random.h"
20
#include "./shared_memory_helper.h"
21

22
23
24
namespace graphbolt {
namespace sampling {

25
26
static const int kPickleVersion = 6199;

27
FusedCSCSamplingGraph::FusedCSCSamplingGraph(
28
    const torch::Tensor& indptr, const torch::Tensor& indices,
29
    const torch::optional<torch::Tensor>& node_type_offset,
30
31
    const torch::optional<torch::Tensor>& type_per_edge,
    const torch::optional<EdgeAttrMap>& edge_attributes)
32
    : indptr_(indptr),
33
      indices_(indices),
34
      node_type_offset_(node_type_offset),
35
36
      type_per_edge_(type_per_edge),
      edge_attributes_(edge_attributes) {
37
38
39
40
41
  TORCH_CHECK(indptr.dim() == 1);
  TORCH_CHECK(indices.dim() == 1);
  TORCH_CHECK(indptr.device() == indices.device());
}

42
c10::intrusive_ptr<FusedCSCSamplingGraph> FusedCSCSamplingGraph::FromCSC(
43
    const torch::Tensor& indptr, const torch::Tensor& indices,
44
    const torch::optional<torch::Tensor>& node_type_offset,
45
46
    const torch::optional<torch::Tensor>& type_per_edge,
    const torch::optional<EdgeAttrMap>& edge_attributes) {
47
48
49
50
51
52
53
54
  if (node_type_offset.has_value()) {
    auto& offset = node_type_offset.value();
    TORCH_CHECK(offset.dim() == 1);
  }
  if (type_per_edge.has_value()) {
    TORCH_CHECK(type_per_edge.value().dim() == 1);
    TORCH_CHECK(type_per_edge.value().size(0) == indices.size(0));
  }
55
56
57
58
59
  if (edge_attributes.has_value()) {
    for (const auto& pair : edge_attributes.value()) {
      TORCH_CHECK(pair.value().size(0) == indices.size(0));
    }
  }
60
  return c10::make_intrusive<FusedCSCSamplingGraph>(
61
      indptr, indices, node_type_offset, type_per_edge, edge_attributes);
62
63
}

64
void FusedCSCSamplingGraph::Load(torch::serialize::InputArchive& archive) {
65
  const int64_t magic_num =
66
      read_from_archive(archive, "FusedCSCSamplingGraph/magic_num").toInt();
67
68
  TORCH_CHECK(
      magic_num == kCSCSamplingGraphSerializeMagic,
69
70
71
72
73
74
      "Magic numbers mismatch when loading FusedCSCSamplingGraph.");
  indptr_ =
      read_from_archive(archive, "FusedCSCSamplingGraph/indptr").toTensor();
  indices_ =
      read_from_archive(archive, "FusedCSCSamplingGraph/indices").toTensor();
  if (read_from_archive(archive, "FusedCSCSamplingGraph/has_node_type_offset")
75
76
          .toBool()) {
    node_type_offset_ =
77
        read_from_archive(archive, "FusedCSCSamplingGraph/node_type_offset")
78
79
            .toTensor();
  }
80
  if (read_from_archive(archive, "FusedCSCSamplingGraph/has_type_per_edge")
81
82
          .toBool()) {
    type_per_edge_ =
83
84
        read_from_archive(archive, "FusedCSCSamplingGraph/type_per_edge")
            .toTensor();
85
  }
86
87
88
89

  // Optional edge attributes.
  torch::IValue has_edge_attributes;
  if (archive.try_read(
90
          "FusedCSCSamplingGraph/has_edge_attributes", has_edge_attributes) &&
91
92
      has_edge_attributes.toBool()) {
    torch::Dict<torch::IValue, torch::IValue> generic_dict =
93
        read_from_archive(archive, "FusedCSCSamplingGraph/edge_attributes")
94
95
96
97
98
99
100
101
102
103
104
            .toGenericDict();
    EdgeAttrMap target_dict;
    for (const auto& pair : generic_dict) {
      std::string key = pair.key().toStringRef();
      torch::Tensor value = pair.value().toTensor();
      // Use move to avoid copy.
      target_dict.insert(std::move(key), std::move(value));
    }
    // Same as above.
    edge_attributes_ = std::move(target_dict);
  }
105
106
}

107
108
109
110
111
112
void FusedCSCSamplingGraph::Save(
    torch::serialize::OutputArchive& archive) const {
  archive.write(
      "FusedCSCSamplingGraph/magic_num", kCSCSamplingGraphSerializeMagic);
  archive.write("FusedCSCSamplingGraph/indptr", indptr_);
  archive.write("FusedCSCSamplingGraph/indices", indices_);
113
  archive.write(
114
115
      "FusedCSCSamplingGraph/has_node_type_offset",
      node_type_offset_.has_value());
116
117
  if (node_type_offset_) {
    archive.write(
118
        "FusedCSCSamplingGraph/node_type_offset", node_type_offset_.value());
119
120
  }
  archive.write(
121
      "FusedCSCSamplingGraph/has_type_per_edge", type_per_edge_.has_value());
122
  if (type_per_edge_) {
123
124
    archive.write(
        "FusedCSCSamplingGraph/type_per_edge", type_per_edge_.value());
125
  }
126
  archive.write(
127
128
      "FusedCSCSamplingGraph/has_edge_attributes",
      edge_attributes_.has_value());
129
  if (edge_attributes_) {
130
131
    archive.write(
        "FusedCSCSamplingGraph/edge_attributes", edge_attributes_.value());
132
  }
133
134
}

135
void FusedCSCSamplingGraph::SetState(
136
137
138
139
140
141
142
143
144
    const torch::Dict<std::string, torch::Dict<std::string, torch::Tensor>>&
        state) {
  // State is a dict of dicts. The tensor-type attributes are stored in the dict
  // with key "independent_tensors". The dict-type attributes (edge_attributes)
  // are stored directly with the their name as the key.
  const auto& independent_tensors = state.at("independent_tensors");
  TORCH_CHECK(
      independent_tensors.at("version_number")
          .equal(torch::tensor({kPickleVersion})),
145
      "Version number mismatches when loading pickled FusedCSCSamplingGraph.")
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
  indptr_ = independent_tensors.at("indptr");
  indices_ = independent_tensors.at("indices");
  if (independent_tensors.find("node_type_offset") !=
      independent_tensors.end()) {
    node_type_offset_ = independent_tensors.at("node_type_offset");
  }
  if (independent_tensors.find("type_per_edge") != independent_tensors.end()) {
    type_per_edge_ = independent_tensors.at("type_per_edge");
  }
  if (state.find("edge_attributes") != state.end()) {
    edge_attributes_ = state.at("edge_attributes");
  }
}

torch::Dict<std::string, torch::Dict<std::string, torch::Tensor>>
161
FusedCSCSamplingGraph::GetState() const {
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
  // State is a dict of dicts. The tensor-type attributes are stored in the dict
  // with key "independent_tensors". The dict-type attributes (edge_attributes)
  // are stored directly with the their name as the key.
  torch::Dict<std::string, torch::Dict<std::string, torch::Tensor>> state;
  torch::Dict<std::string, torch::Tensor> independent_tensors;
  // Serialization version number. It indicates the serialization method of the
  // whole state.
  independent_tensors.insert("version_number", torch::tensor({kPickleVersion}));
  independent_tensors.insert("indptr", indptr_);
  independent_tensors.insert("indices", indices_);
  if (node_type_offset_.has_value()) {
    independent_tensors.insert("node_type_offset", node_type_offset_.value());
  }
  if (type_per_edge_.has_value()) {
    independent_tensors.insert("type_per_edge", type_per_edge_.value());
  }
  state.insert("independent_tensors", independent_tensors);
  if (edge_attributes_.has_value()) {
    state.insert("edge_attributes", edge_attributes_.value());
  }
  return state;
}

185
c10::intrusive_ptr<SampledSubgraph> FusedCSCSamplingGraph::InSubgraph(
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
    const torch::Tensor& nodes) const {
  using namespace torch::indexing;
  const int32_t kDefaultGrainSize = 100;
  torch::Tensor indptr = torch::zeros_like(indptr_);
  const size_t num_seeds = nodes.size(0);
  std::vector<torch::Tensor> indices_arr(num_seeds);
  std::vector<torch::Tensor> edge_ids_arr(num_seeds);
  std::vector<torch::Tensor> type_per_edge_arr(num_seeds);
  torch::parallel_for(
      0, num_seeds, kDefaultGrainSize, [&](size_t start, size_t end) {
        for (size_t i = start; i < end; ++i) {
          const int64_t node_id = nodes[i].item<int64_t>();
          const int64_t start_idx = indptr_[node_id].item<int64_t>();
          const int64_t end_idx = indptr_[node_id + 1].item<int64_t>();
          indptr[node_id + 1] = end_idx - start_idx;
          indices_arr[i] = indices_.slice(0, start_idx, end_idx);
          edge_ids_arr[i] = torch::arange(start_idx, end_idx);
          if (type_per_edge_) {
            type_per_edge_arr[i] =
                type_per_edge_.value().slice(0, start_idx, end_idx);
          }
        }
      });

  const auto& nonzero_idx = torch::nonzero(indptr).reshape(-1);
  torch::Tensor compact_indptr =
      torch::zeros({nonzero_idx.size(0) + 1}, indptr_.dtype());
  compact_indptr.index_put_({Slice(1, None)}, indptr.index({nonzero_idx}));
  return c10::make_intrusive<SampledSubgraph>(
215
      compact_indptr.cumsum(0), torch::cat(indices_arr), nonzero_idx - 1,
216
217
218
219
220
221
      torch::arange(0, NumNodes()), torch::cat(edge_ids_arr),
      type_per_edge_
          ? torch::optional<torch::Tensor>{torch::cat(type_per_edge_arr)}
          : torch::nullopt);
}

222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
/**
 * @brief Get a lambda function which counts the number of the neighbors to be
 * sampled.
 *
 * @param fanouts The number of edges to be sampled for each node with or
 * without considering edge types.
 * @param replace Boolean indicating whether the sample is performed with or
 * without replacement. If True, a value can be selected multiple times.
 * Otherwise, each value can be selected only once.
 * @param type_per_edge A tensor representing the type of each edge, if
 * present.
 * @param probs_or_mask Optional tensor containing the (unnormalized)
 * probabilities associated with each neighboring edge of a node in the original
 * graph. It must be a 1D floating-point tensor with the number of elements
 * equal to the number of edges in the graph.
 *
 * @return A lambda function (int64_t offset, int64_t num_neighbors) ->
 * torch::Tensor, which takes offset (the starting edge ID of the given node)
 * and num_neighbors (number of neighbors) as params and returns the pick number
 * of the given node.
 */
auto GetNumPickFn(
    const std::vector<int64_t>& fanouts, bool replace,
    const torch::optional<torch::Tensor>& type_per_edge,
    const torch::optional<torch::Tensor>& probs_or_mask) {
  // If fanouts.size() > 1, returns the total number of all edge types of the
  // given node.
  return [&fanouts, replace, &probs_or_mask, &type_per_edge](
             int64_t offset, int64_t num_neighbors) {
    if (fanouts.size() > 1) {
      return NumPickByEtype(
          fanouts, replace, type_per_edge.value(), probs_or_mask, offset,
          num_neighbors);
    } else {
      return NumPick(fanouts[0], replace, probs_or_mask, offset, num_neighbors);
    }
  };
}

261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
/**
 * @brief Get a lambda function which contains the sampling process.
 *
 * @param fanouts The number of edges to be sampled for each node with or
 * without considering edge types.
 * @param replace Boolean indicating whether the sample is performed with or
 * without replacement. If True, a value can be selected multiple times.
 * Otherwise, each value can be selected only once.
 * @param options Tensor options specifying the desired data type of the result.
 * @param type_per_edge A tensor representing the type of each edge, if
 * present.
 * @param probs_or_mask Optional tensor containing the (unnormalized)
 * probabilities associated with each neighboring edge of a node in the original
 * graph. It must be a 1D floating-point tensor with the number of elements
 * equal to the number of edges in the graph.
 * @param args Contains sampling algorithm specific arguments.
 *
278
279
280
281
282
 * @return A lambda function: (int64_t offset, int64_t num_neighbors,
 * PickedType* picked_data_ptr) -> torch::Tensor, which takes offset (the
 * starting edge ID of the given node) and num_neighbors (number of neighbors)
 * as params and puts the picked neighbors at the address specified by
 * picked_data_ptr.
283
 */
284
template <SamplerType S>
285
286
287
288
289
290
auto GetPickFn(
    const std::vector<int64_t>& fanouts, bool replace,
    const torch::TensorOptions& options,
    const torch::optional<torch::Tensor>& type_per_edge,
    const torch::optional<torch::Tensor>& probs_or_mask, SamplerArgs<S> args) {
  return [&fanouts, replace, &options, &type_per_edge, &probs_or_mask, args](
291
292
293
294
             int64_t offset, int64_t num_neighbors, auto picked_data_ptr) {
    // If fanouts.size() > 1, perform sampling for each edge type of each
    // node; otherwise just sample once for each node with no regard of edge
    // types.
295
296
297
    if (fanouts.size() > 1) {
      return PickByEtype(
          offset, num_neighbors, fanouts, replace, options,
298
          type_per_edge.value(), probs_or_mask, args, picked_data_ptr);
299
300
301
    } else {
      return Pick(
          offset, num_neighbors, fanouts[0], replace, options, probs_or_mask,
302
          args, picked_data_ptr);
303
304
305
306
    }
  };
}

307
template <typename NumPickFn, typename PickFn>
308
c10::intrusive_ptr<SampledSubgraph> FusedCSCSamplingGraph::SampleNeighborsImpl(
309
310
    const torch::Tensor& nodes, bool return_eids, NumPickFn num_pick_fn,
    PickFn pick_fn) const {
311
  const int64_t num_nodes = nodes.size(0);
312
  const auto indptr_options = indptr_.options();
313
  torch::Tensor num_picked_neighbors_per_node =
314
      torch::empty({num_nodes + 1}, indptr_options);
315

316
317
318
  // Calculate GrainSize for parallel_for.
  // Set the default grain size to 64.
  const int64_t grain_size = 64;
319
320
321
322
323
  torch::Tensor picked_eids;
  torch::Tensor subgraph_indptr;
  torch::Tensor subgraph_indices;
  torch::optional<torch::Tensor> subgraph_type_per_edge = torch::nullopt;

324
  AT_DISPATCH_INTEGRAL_TYPES(
325
326
327
328
329
330
331
332
      indptr_.scalar_type(), "SampleNeighborsImpl", ([&] {
        const scalar_t* indptr_data = indptr_.data_ptr<scalar_t>();
        auto num_picked_neighbors_data_ptr =
            num_picked_neighbors_per_node.data_ptr<scalar_t>();
        num_picked_neighbors_data_ptr[0] = 0;
        const auto nodes_data_ptr = nodes.data_ptr<int64_t>();

        // Step 1. Calculate pick number of each node.
333
        torch::parallel_for(
334
335
            0, num_nodes, grain_size, [&](int64_t begin, int64_t end) {
              for (int64_t i = begin; i < end; ++i) {
336
                const auto nid = nodes_data_ptr[i];
337
338
339
340
341
342
343
                TORCH_CHECK(
                    nid >= 0 && nid < NumNodes(),
                    "The seed nodes' IDs should fall within the range of the "
                    "graph's node IDs.");
                const auto offset = indptr_data[nid];
                const auto num_neighbors = indptr_data[nid + 1] - offset;

344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
                num_picked_neighbors_data_ptr[i + 1] =
                    num_neighbors == 0 ? 0 : num_pick_fn(offset, num_neighbors);
              }
            });

        // Step 2. Calculate prefix sum to get total length and offsets of each
        // node. It's also the indptr of the generated subgraph.
        subgraph_indptr = torch::cumsum(num_picked_neighbors_per_node, 0);

        // Step 3. Allocate the tensor for picked neighbors.
        const auto total_length =
            subgraph_indptr.data_ptr<scalar_t>()[num_nodes];
        picked_eids = torch::empty({total_length}, indptr_options);
        subgraph_indices = torch::empty({total_length}, indices_.options());
        if (type_per_edge_.has_value()) {
          subgraph_type_per_edge =
              torch::empty({total_length}, type_per_edge_.value().options());
        }
362

363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
        // Step 4. Pick neighbors for each node.
        auto picked_eids_data_ptr = picked_eids.data_ptr<scalar_t>();
        auto subgraph_indptr_data_ptr = subgraph_indptr.data_ptr<scalar_t>();
        torch::parallel_for(
            0, num_nodes, grain_size, [&](int64_t begin, int64_t end) {
              for (int64_t i = begin; i < end; ++i) {
                const auto nid = nodes_data_ptr[i];
                const auto offset = indptr_data[nid];
                const auto num_neighbors = indptr_data[nid + 1] - offset;
                const auto picked_number = num_picked_neighbors_data_ptr[i + 1];
                const auto picked_offset = subgraph_indptr_data_ptr[i];
                if (picked_number > 0) {
                  auto actual_picked_count = pick_fn(
                      offset, num_neighbors,
                      picked_eids_data_ptr + picked_offset);
                  TORCH_CHECK(
                      actual_picked_count == picked_number,
                      "Actual picked count doesn't match the calculated pick "
                      "number.");

                  // Step 5. Calculate other attributes and return the subgraph.
                  AT_DISPATCH_INTEGRAL_TYPES(
                      subgraph_indices.scalar_type(),
                      "IndexSelectSubgraphIndices", ([&] {
                        auto subgraph_indices_data_ptr =
                            subgraph_indices.data_ptr<scalar_t>();
                        auto indices_data_ptr = indices_.data_ptr<scalar_t>();
                        for (auto i = picked_offset;
                             i < picked_offset + picked_number; ++i) {
                          subgraph_indices_data_ptr[i] =
                              indices_data_ptr[picked_eids_data_ptr[i]];
                        }
                      }));
                  if (type_per_edge_.has_value()) {
                    AT_DISPATCH_INTEGRAL_TYPES(
                        subgraph_type_per_edge.value().scalar_type(),
                        "IndexSelectTypePerEdge", ([&] {
                          auto subgraph_type_per_edge_data_ptr =
                              subgraph_type_per_edge.value()
                                  .data_ptr<scalar_t>();
                          auto type_per_edge_data_ptr =
                              type_per_edge_.value().data_ptr<scalar_t>();
                          for (auto i = picked_offset;
                               i < picked_offset + picked_number; ++i) {
                            subgraph_type_per_edge_data_ptr[i] =
                                type_per_edge_data_ptr[picked_eids_data_ptr[i]];
                          }
                        }));
                  }
                }
413
              }
414
            });
415
      }));
416

417
418
  torch::optional<torch::Tensor> subgraph_reverse_edge_ids = torch::nullopt;
  if (return_eids) subgraph_reverse_edge_ids = std::move(picked_eids);
419

420
  return c10::make_intrusive<SampledSubgraph>(
421
      subgraph_indptr, subgraph_indices, nodes, torch::nullopt,
422
      subgraph_reverse_edge_ids, subgraph_type_per_edge);
423
424
}

425
c10::intrusive_ptr<SampledSubgraph> FusedCSCSamplingGraph::SampleNeighbors(
426
427
428
429
430
431
432
433
434
435
436
437
438
439
    const torch::Tensor& nodes, const std::vector<int64_t>& fanouts,
    bool replace, bool layer, bool return_eids,
    torch::optional<std::string> probs_name) const {
  torch::optional<torch::Tensor> probs_or_mask = torch::nullopt;
  if (probs_name.has_value() && !probs_name.value().empty()) {
    probs_or_mask = edge_attributes_.value().at(probs_name.value());
    // Note probs will be passed as input for 'torch.multinomial' in deeper
    // stack, which doesn't support 'torch.half' and 'torch.bool' data types. To
    // avoid crashes, convert 'probs_or_mask' to 'float32' data type.
    if (probs_or_mask.value().dtype() == torch::kBool ||
        probs_or_mask.value().dtype() == torch::kFloat16) {
      probs_or_mask = probs_or_mask.value().to(torch::kFloat32);
    }
  }
440

441
442
443
444
445
  if (layer) {
    const int64_t random_seed = RandomEngine::ThreadLocal()->RandInt(
        static_cast<int64_t>(0), std::numeric_limits<int64_t>::max());
    SamplerArgs<SamplerType::LABOR> args{indices_, random_seed, NumNodes()};
    return SampleNeighborsImpl(
446
        nodes, return_eids,
447
        GetNumPickFn(fanouts, replace, type_per_edge_, probs_or_mask),
448
449
450
        GetPickFn(
            fanouts, replace, indptr_.options(), type_per_edge_, probs_or_mask,
            args));
451
452
453
  } else {
    SamplerArgs<SamplerType::NEIGHBOR> args;
    return SampleNeighborsImpl(
454
        nodes, return_eids,
455
        GetNumPickFn(fanouts, replace, type_per_edge_, probs_or_mask),
456
457
458
        GetPickFn(
            fanouts, replace, indptr_.options(), type_per_edge_, probs_or_mask,
            args));
459
460
461
  }
}

462
std::tuple<torch::Tensor, torch::Tensor>
463
FusedCSCSamplingGraph::SampleNegativeEdgesUniform(
464
465
466
467
468
469
470
471
472
473
    const std::tuple<torch::Tensor, torch::Tensor>& node_pairs,
    int64_t negative_ratio, int64_t max_node_id) const {
  torch::Tensor pos_src;
  std::tie(pos_src, std::ignore) = node_pairs;
  auto neg_len = pos_src.size(0) * negative_ratio;
  auto neg_src = pos_src.repeat(negative_ratio);
  auto neg_dst = torch::randint(0, max_node_id, {neg_len}, pos_src.options());
  return std::make_tuple(neg_src, neg_dst);
}

474
475
static c10::intrusive_ptr<FusedCSCSamplingGraph>
BuildGraphFromSharedMemoryHelper(SharedMemoryHelper&& helper) {
476
477
478
479
480
481
  helper.InitializeRead();
  auto indptr = helper.ReadTorchTensor();
  auto indices = helper.ReadTorchTensor();
  auto node_type_offset = helper.ReadTorchTensor();
  auto type_per_edge = helper.ReadTorchTensor();
  auto edge_attributes = helper.ReadTorchTensorDict();
482
  auto graph = c10::make_intrusive<FusedCSCSamplingGraph>(
483
484
      indptr.value(), indices.value(), node_type_offset, type_per_edge,
      edge_attributes);
485
486
487
  auto shared_memory = helper.ReleaseSharedMemory();
  graph->HoldSharedMemoryObject(
      std::move(shared_memory.first), std::move(shared_memory.second));
488
489
490
  return graph;
}

491
492
c10::intrusive_ptr<FusedCSCSamplingGraph>
FusedCSCSamplingGraph::CopyToSharedMemory(
493
    const std::string& shared_memory_name) {
494
495
496
497
498
499
500
501
  SharedMemoryHelper helper(shared_memory_name, SERIALIZED_METAINFO_SIZE_MAX);
  helper.WriteTorchTensor(indptr_);
  helper.WriteTorchTensor(indices_);
  helper.WriteTorchTensor(node_type_offset_);
  helper.WriteTorchTensor(type_per_edge_);
  helper.WriteTorchTensorDict(edge_attributes_);
  helper.Flush();
  return BuildGraphFromSharedMemoryHelper(std::move(helper));
502
503
}

504
505
c10::intrusive_ptr<FusedCSCSamplingGraph>
FusedCSCSamplingGraph::LoadFromSharedMemory(
506
    const std::string& shared_memory_name) {
507
508
  SharedMemoryHelper helper(shared_memory_name, SERIALIZED_METAINFO_SIZE_MAX);
  return BuildGraphFromSharedMemoryHelper(std::move(helper));
509
510
}

511
void FusedCSCSamplingGraph::HoldSharedMemoryObject(
512
513
514
515
516
    SharedMemoryPtr tensor_metadata_shm, SharedMemoryPtr tensor_data_shm) {
  tensor_metadata_shm_ = std::move(tensor_metadata_shm);
  tensor_data_shm_ = std::move(tensor_data_shm);
}

517
518
519
520
int64_t NumPick(
    int64_t fanout, bool replace,
    const torch::optional<torch::Tensor>& probs_or_mask, int64_t offset,
    int64_t num_neighbors) {
521
522
523
524
525
526
527
528
529
530
531
  int64_t num_valid_neighbors = num_neighbors;
  if (probs_or_mask.has_value()) {
    // Subtract the count of zeros in probs_or_mask.
    AT_DISPATCH_ALL_TYPES(
        probs_or_mask.value().scalar_type(), "CountZero", ([&] {
          scalar_t* probs_data_ptr = probs_or_mask.value().data_ptr<scalar_t>();
          num_valid_neighbors -= std::count(
              probs_data_ptr + offset, probs_data_ptr + offset + num_neighbors,
              0);
        }));
  }
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
  if (num_valid_neighbors == 0 || fanout == -1) return num_valid_neighbors;
  return replace ? fanout : std::min(fanout, num_valid_neighbors);
}

int64_t NumPickByEtype(
    const std::vector<int64_t>& fanouts, bool replace,
    const torch::Tensor& type_per_edge,
    const torch::optional<torch::Tensor>& probs_or_mask, int64_t offset,
    int64_t num_neighbors) {
  int64_t etype_begin = offset;
  const int64_t end = offset + num_neighbors;
  int64_t total_count = 0;
  AT_DISPATCH_INTEGRAL_TYPES(
      type_per_edge.scalar_type(), "NumPickFnByEtype", ([&] {
        const scalar_t* type_per_edge_data = type_per_edge.data_ptr<scalar_t>();
        while (etype_begin < end) {
          scalar_t etype = type_per_edge_data[etype_begin];
          TORCH_CHECK(
              etype >= 0 && etype < (int64_t)fanouts.size(),
              "Etype values exceed the number of fanouts.");
          auto etype_end_it = std::upper_bound(
              type_per_edge_data + etype_begin, type_per_edge_data + end,
              etype);
          int64_t etype_end = etype_end_it - type_per_edge_data;
          // Do sampling for one etype.
          total_count += NumPick(
              fanouts[etype], replace, probs_or_mask, etype_begin,
              etype_end - etype_begin);
          etype_begin = etype_end;
        }
      }));
  return total_count;
}

566
567
568
569
570
571
572
573
/**
 * @brief Perform uniform sampling of elements and return the sampled indices.
 *
 * @param offset The starting edge ID for the connected neighbors of the sampled
 * node.
 * @param num_neighbors The number of neighbors to pick.
 * @param fanout The number of edges to be sampled for each node. It should be
 * >= 0 or -1.
574
575
576
 *  - When the value is -1, all neighbors will be sampled once regardless of
 * replacement. It is equivalent to selecting all neighbors when the fanout is
 * >= the number of neighbors (and replacement is set to false).
577
578
 *  - When the value is a non-negative integer, it serves as a minimum
 * threshold for selecting neighbors.
579
 * @param replace Boolean indicating whether the sample is performed with or
580
581
582
 * without replacement. If True, a value can be selected multiple times.
 * Otherwise, each value can be selected only once.
 * @param options Tensor options specifying the desired data type of the result.
583
584
 * @param picked_data_ptr The destination address where the picked neighbors
 * should be put. Enough memory space should be allocated in advance.
585
 */
586
template <typename PickedType>
587
inline int64_t UniformPick(
588
    int64_t offset, int64_t num_neighbors, int64_t fanout, bool replace,
589
    const torch::TensorOptions& options, PickedType* picked_data_ptr) {
590
  if ((fanout == -1) || (num_neighbors <= fanout && !replace)) {
591
    std::iota(picked_data_ptr, picked_data_ptr + num_neighbors, offset);
592
    return num_neighbors;
593
  } else if (replace) {
594
595
596
597
598
    std::memcpy(
        picked_data_ptr,
        torch::randint(offset, offset + num_neighbors, {fanout}, options)
            .data_ptr<PickedType>(),
        fanout * sizeof(PickedType));
599
    return fanout;
600
  } else {
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
    // We use different sampling strategies for different sampling case.
    if (fanout >= num_neighbors / 10) {
      // [Algorithm]
      // This algorithm is conceptually related to the Fisher-Yates
      // shuffle.
      //
      // [Complexity Analysis]
      // This algorithm's memory complexity is O(num_neighbors), but
      // it generates fewer random numbers (O(fanout)).
      //
      // (Compare) Reservoir algorithm is one of the most classical
      // sampling algorithms. Both the reservoir algorithm and our
      // algorithm offer distinct advantages, we need to compare to
      // illustrate our trade-offs.
      // The reservoir algorithm is memory-efficient (O(fanout)) but
      // creates many random numbers (O(num_neighbors)), which is
      // costly.
      //
      // [Practical Consideration]
      // Use this algorithm when `fanout >= num_neighbors / 10` to
      // reduce computation.
      // In this scenarios above, memory complexity is not a concern due
      // to the small size of both `fanout` and `num_neighbors`. And it
      // is efficient to allocate a small amount of memory. So the
      // algorithm performence is great in this case.
      std::vector<PickedType> seq(num_neighbors);
      // Assign the seq with [offset, offset + num_neighbors].
      std::iota(seq.begin(), seq.end(), offset);
      for (int64_t i = 0; i < fanout; ++i) {
        auto j = RandomEngine::ThreadLocal()->RandInt(i, num_neighbors);
        std::swap(seq[i], seq[j]);
      }
      // Save the randomly sampled fanout elements to the output tensor.
      std::copy(seq.begin(), seq.begin() + fanout, picked_data_ptr);
635
      return fanout;
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
    } else if (fanout < 64) {
      // [Algorithm]
      // Use linear search to verify uniqueness.
      //
      // [Complexity Analysis]
      // Since the set of numbers is small (up to 64), so it is more
      // cost-effective for the CPU to use this algorithm.
      auto begin = picked_data_ptr;
      auto end = picked_data_ptr + fanout;

      while (begin != end) {
        // Put the new random number in the last position.
        *begin = RandomEngine::ThreadLocal()->RandInt(
            offset, offset + num_neighbors);
        // Check if a new value doesn't exist in current
        // range(picked_data_ptr, begin). Otherwise get a new
        // value until we haven't unique range of elements.
        auto it = std::find(picked_data_ptr, begin, *begin);
        if (it == begin) ++begin;
      }
656
      return fanout;
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
    } else {
      // [Algorithm]
      // Use hash-set to verify uniqueness. In the best scenario, the
      // time complexity is O(fanout), assuming no conflicts occur.
      //
      // [Complexity Analysis]
      // Let K = (fanout / num_neighbors), the expected number of extra
      // sampling steps is roughly K^2 / (1-K) * num_neighbors, which
      // means in the worst case scenario, the time complexity is
      // O(num_neighbors^2).
      //
      // [Practical Consideration]
      // In practice, we set the threshold K to 1/10. This trade-off is
      // due to the slower performance of std::unordered_set, which
      // would otherwise increase the sampling cost. By doing so, we
      // achieve a balance between theoretical efficiency and practical
      // performance.
      std::unordered_set<PickedType> picked_set;
      while (static_cast<int64_t>(picked_set.size()) < fanout) {
        picked_set.insert(RandomEngine::ThreadLocal()->RandInt(
            offset, offset + num_neighbors));
      }
      std::copy(picked_set.begin(), picked_set.end(), picked_data_ptr);
680
      return picked_set.size();
681
    }
682
683
684
  }
}

685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
/**
 * @brief Perform non-uniform sampling of elements based on probabilities and
 * return the sampled indices.
 *
 * If 'probs_or_mask' is provided, it indicates that the sampling is
 * non-uniform. In such cases:
 * - When the number of neighbors with non-zero probability is less than or
 * equal to fanout, all neighbors with non-zero probability will be selected.
 * - When the number of neighbors with non-zero probability exceeds fanout, the
 * sampling process will select 'fanout' elements based on their respective
 * probabilities. Higher probabilities will increase the chances of being chosen
 * during the sampling process.
 *
 * @param offset The starting edge ID for the connected neighbors of the sampled
 * node.
 * @param num_neighbors The number of neighbors to pick.
 * @param fanout The number of edges to be sampled for each node. It should be
 * >= 0 or -1.
703
704
705
706
 *  - When the value is -1, all neighbors with non-zero probability will be
 * sampled once regardless of replacement. It is equivalent to selecting all
 * neighbors with non-zero probability when the fanout is >= the number of
 * neighbors (and replacement is set to false).
707
708
 *  - When the value is a non-negative integer, it serves as a minimum
 * threshold for selecting neighbors.
709
 * @param replace Boolean indicating whether the sample is performed with or
710
711
712
713
714
715
716
 * without replacement. If True, a value can be selected multiple times.
 * Otherwise, each value can be selected only once.
 * @param options Tensor options specifying the desired data type of the result.
 * @param probs_or_mask Optional tensor containing the (unnormalized)
 * probabilities associated with each neighboring edge of a node in the original
 * graph. It must be a 1D floating-point tensor with the number of elements
 * equal to the number of edges in the graph.
717
718
 * @param picked_data_ptr The destination address where the picked neighbors
 * should be put. Enough memory space should be allocated in advance.
719
 */
720
template <typename PickedType>
721
inline int64_t NonUniformPick(
722
723
    int64_t offset, int64_t num_neighbors, int64_t fanout, bool replace,
    const torch::TensorOptions& options,
724
725
    const torch::optional<torch::Tensor>& probs_or_mask,
    PickedType* picked_data_ptr) {
726
727
728
729
  auto local_probs =
      probs_or_mask.value().slice(0, offset, offset + num_neighbors);
  auto positive_probs_indices = local_probs.nonzero().squeeze(1);
  auto num_positive_probs = positive_probs_indices.size(0);
730
  if (num_positive_probs == 0) return 0;
731
  if ((fanout == -1) || (num_positive_probs <= fanout && !replace)) {
732
733
734
735
    std::memcpy(
        picked_data_ptr,
        (positive_probs_indices + offset).data_ptr<PickedType>(),
        num_positive_probs * sizeof(PickedType));
736
    return num_positive_probs;
737
738
  } else {
    if (!replace) fanout = std::min(fanout, num_positive_probs);
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
    if (fanout == 0) return 0;
    AT_DISPATCH_FLOATING_TYPES(
        local_probs.scalar_type(), "MultinomialSampling", ([&] {
          auto local_probs_data_ptr = local_probs.data_ptr<scalar_t>();
          auto positive_probs_indices_ptr =
              positive_probs_indices.data_ptr<PickedType>();

          if (!replace) {
            // The algorithm is from gumbel softmax.
            // s = argmax( logp - log(-log(eps)) ) where eps ~ U(0, 1).
            // Here we can apply exp to the formula which will not affect result
            // of argmax or topk. Then we have
            // s = argmax( p / (-log(eps)) ) where eps ~ U(0, 1).
            // We can also simplify the formula above by
            // s = argmax( p / q ) where q ~ Exp(1).
            if (fanout == 1) {
              // Return argmax(p / q).
              scalar_t max_prob = 0;
              PickedType max_prob_index = -1;
              // We only care about the neighbors with non-zero probability.
              for (auto i = 0; i < num_positive_probs; ++i) {
                // Calculate (p / q) for the current neighbor.
                scalar_t current_prob =
                    local_probs_data_ptr[positive_probs_indices_ptr[i]] /
                    RandomEngine::ThreadLocal()->Exponential(1.);
                if (current_prob > max_prob) {
                  max_prob = current_prob;
                  max_prob_index = positive_probs_indices_ptr[i];
                }
              }
              *picked_data_ptr = max_prob_index + offset;
            } else {
              // Return topk(p / q).
              std::vector<std::pair<scalar_t, PickedType>> q(
                  num_positive_probs);
              for (auto i = 0; i < num_positive_probs; ++i) {
                q[i].first =
                    local_probs_data_ptr[positive_probs_indices_ptr[i]] /
                    RandomEngine::ThreadLocal()->Exponential(1.);
                q[i].second = positive_probs_indices_ptr[i];
              }
              if (fanout < num_positive_probs / 64) {
                // Use partial_sort.
                std::partial_sort(
                    q.begin(), q.begin() + fanout, q.end(), std::greater{});
                for (auto i = 0; i < fanout; ++i) {
                  picked_data_ptr[i] = q[i].second + offset;
                }
              } else {
                // Use nth_element.
                std::nth_element(
                    q.begin(), q.begin() + fanout - 1, q.end(), std::greater{});
                for (auto i = 0; i < fanout; ++i) {
                  picked_data_ptr[i] = q[i].second + offset;
                }
              }
            }
          } else {
            // Calculate cumulative sum of probabilities.
            std::vector<scalar_t> prefix_sum_probs(num_positive_probs);
            scalar_t sum_probs = 0;
            for (auto i = 0; i < num_positive_probs; ++i) {
              sum_probs += local_probs_data_ptr[positive_probs_indices_ptr[i]];
              prefix_sum_probs[i] = sum_probs;
            }
            // Normalize.
            if ((sum_probs > 1.00001) || (sum_probs < 0.99999)) {
              for (auto i = 0; i < num_positive_probs; ++i) {
                prefix_sum_probs[i] /= sum_probs;
              }
            }
            for (auto i = 0; i < fanout; ++i) {
              // Sample a probability mass from a uniform distribution.
              double uniform_sample =
                  RandomEngine::ThreadLocal()->Uniform(0., 1.);
              // Use a binary search to find the index.
              int sampled_index = std::lower_bound(
                                      prefix_sum_probs.begin(),
                                      prefix_sum_probs.end(), uniform_sample) -
                                  prefix_sum_probs.begin();
              picked_data_ptr[i] =
                  positive_probs_indices_ptr[sampled_index] + offset;
            }
          }
        }));
824
    return fanout;
825
826
827
  }
}

828
template <typename PickedType>
829
int64_t Pick(
830
831
    int64_t offset, int64_t num_neighbors, int64_t fanout, bool replace,
    const torch::TensorOptions& options,
832
    const torch::optional<torch::Tensor>& probs_or_mask,
833
    SamplerArgs<SamplerType::NEIGHBOR> args, PickedType* picked_data_ptr) {
834
  if (probs_or_mask.has_value()) {
835
    return NonUniformPick(
836
837
        offset, num_neighbors, fanout, replace, options, probs_or_mask,
        picked_data_ptr);
838
  } else {
839
    return UniformPick(
840
        offset, num_neighbors, fanout, replace, options, picked_data_ptr);
841
842
843
  }
}

844
template <SamplerType S, typename PickedType>
845
int64_t PickByEtype(
846
847
    int64_t offset, int64_t num_neighbors, const std::vector<int64_t>& fanouts,
    bool replace, const torch::TensorOptions& options,
848
    const torch::Tensor& type_per_edge,
849
850
    const torch::optional<torch::Tensor>& probs_or_mask, SamplerArgs<S> args,
    PickedType* picked_data_ptr) {
851
852
  int64_t etype_begin = offset;
  int64_t etype_end = offset;
853
  int64_t pick_offset = 0;
854
855
856
  AT_DISPATCH_INTEGRAL_TYPES(
      type_per_edge.scalar_type(), "PickByEtype", ([&] {
        const scalar_t* type_per_edge_data = type_per_edge.data_ptr<scalar_t>();
857
858
859
        const auto end = offset + num_neighbors;
        while (etype_begin < end) {
          scalar_t etype = type_per_edge_data[etype_begin];
860
          TORCH_CHECK(
861
              etype >= 0 && etype < (int64_t)fanouts.size(),
862
              "Etype values exceed the number of fanouts.");
863
          int64_t fanout = fanouts[etype];
864
865
866
867
          auto etype_end_it = std::upper_bound(
              type_per_edge_data + etype_begin, type_per_edge_data + end,
              etype);
          etype_end = etype_end_it - type_per_edge_data;
868
869
          // Do sampling for one etype.
          if (fanout != 0) {
870
            int64_t picked_count = Pick(
871
                etype_begin, etype_end - etype_begin, fanout, replace, options,
872
873
                probs_or_mask, args, picked_data_ptr + pick_offset);
            pick_offset += picked_count;
874
875
876
877
          }
          etype_begin = etype_end;
        }
      }));
878
  return pick_offset;
879
880
}

881
template <typename PickedType>
882
int64_t Pick(
883
884
885
    int64_t offset, int64_t num_neighbors, int64_t fanout, bool replace,
    const torch::TensorOptions& options,
    const torch::optional<torch::Tensor>& probs_or_mask,
886
    SamplerArgs<SamplerType::LABOR> args, PickedType* picked_data_ptr) {
887
  if (fanout == 0) return 0;
888
  if (probs_or_mask.has_value()) {
889
    if (fanout < 0) {
890
      return NonUniformPick(
891
892
893
          offset, num_neighbors, fanout, replace, options, probs_or_mask,
          picked_data_ptr);
    } else {
894
      int64_t picked_count;
895
896
897
      AT_DISPATCH_FLOATING_TYPES(
          probs_or_mask.value().scalar_type(), "LaborPickFloatType", ([&] {
            if (replace) {
898
              picked_count = LaborPick<true, true, scalar_t>(
899
900
901
                  offset, num_neighbors, fanout, options, probs_or_mask, args,
                  picked_data_ptr);
            } else {
902
              picked_count = LaborPick<true, false, scalar_t>(
903
904
905
906
                  offset, num_neighbors, fanout, options, probs_or_mask, args,
                  picked_data_ptr);
            }
          }));
907
      return picked_count;
908
909
    }
  } else if (fanout < 0) {
910
    return UniformPick(
911
        offset, num_neighbors, fanout, replace, options, picked_data_ptr);
912
  } else if (replace) {
913
    return LaborPick<false, true, float>(
914
        offset, num_neighbors, fanout, options,
915
        /* probs_or_mask= */ torch::nullopt, args, picked_data_ptr);
916
  } else {  // replace = false
917
    return LaborPick<false, false, float>(
918
        offset, num_neighbors, fanout, options,
919
        /* probs_or_mask= */ torch::nullopt, args, picked_data_ptr);
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
  }
}

template <typename T, typename U>
inline void safe_divide(T& a, U b) {
  a = b > 0 ? (T)(a / b) : std::numeric_limits<T>::infinity();
}

/**
 * @brief Perform uniform-nonuniform sampling of elements depending on the
 * template parameter NonUniform and return the sampled indices.
 *
 * @param offset The starting edge ID for the connected neighbors of the sampled
 * node.
 * @param num_neighbors The number of neighbors to pick.
 * @param fanout The number of edges to be sampled for each node. It should be
 * >= 0 or -1.
937
938
939
940
 *  - When the value is -1, all neighbors (with non-zero probability, if
 * weighted) will be sampled once regardless of replacement. It is equivalent to
 * selecting all neighbors with non-zero probability when the fanout is >= the
 * number of neighbors (and replacement is set to false).
941
942
943
944
945
946
947
948
 *  - When the value is a non-negative integer, it serves as a minimum
 * threshold for selecting neighbors.
 * @param options Tensor options specifying the desired data type of the result.
 * @param probs_or_mask Optional tensor containing the (unnormalized)
 * probabilities associated with each neighboring edge of a node in the original
 * graph. It must be a 1D floating-point tensor with the number of elements
 * equal to the number of edges in the graph.
 * @param args Contains labor specific arguments.
949
950
 * @param picked_data_ptr The destination address where the picked neighbors
 * should be put. Enough memory space should be allocated in advance.
951
 */
952
template <
953
954
    bool NonUniform, bool Replace, typename ProbsType, typename PickedType,
    int StackSize>
955
inline int64_t LaborPick(
956
957
958
    int64_t offset, int64_t num_neighbors, int64_t fanout,
    const torch::TensorOptions& options,
    const torch::optional<torch::Tensor>& probs_or_mask,
959
    SamplerArgs<SamplerType::LABOR> args, PickedType* picked_data_ptr) {
960
  fanout = Replace ? fanout : std::min(fanout, num_neighbors);
961
  if (!NonUniform && !Replace && fanout >= num_neighbors) {
962
    std::iota(picked_data_ptr, picked_data_ptr + num_neighbors, offset);
963
    return num_neighbors;
964
965
  }
  // Assuming max_degree of a vertex is <= 4 billion.
966
967
968
969
970
971
972
973
974
  std::array<std::pair<float, uint32_t>, StackSize> heap;
  auto heap_data = heap.data();
  torch::Tensor heap_tensor;
  if (fanout > StackSize) {
    constexpr int factor = sizeof(heap_data[0]) / sizeof(int32_t);
    heap_tensor = torch::empty({fanout * factor}, torch::kInt32);
    heap_data = reinterpret_cast<std::pair<float, uint32_t>*>(
        heap_tensor.data_ptr<int32_t>());
  }
975
976
977
  const ProbsType* local_probs_data =
      NonUniform ? probs_or_mask.value().data_ptr<ProbsType>() + offset
                 : nullptr;
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
  AT_DISPATCH_INTEGRAL_TYPES(
      args.indices.scalar_type(), "LaborPickMain", ([&] {
        const scalar_t* local_indices_data =
            args.indices.data_ptr<scalar_t>() + offset;
        if constexpr (Replace) {
          // [Algorithm] @mfbalin
          // Use a max-heap to get rid of the big random numbers and filter the
          // smallest fanout of them. Implements arXiv:2210.13339 Section A.3.
          // Unlike sampling without replacement below, the same item can be
          // included fanout times in our sample. Thus, we sort and pick the
          // smallest fanout random numbers out of num_neighbors * fanout of
          // them. Each item has fanout many random numbers in the race and the
          // smallest fanout of them get picked. Instead of generating
          // fanout * num_neighbors random numbers and increase the complexity,
          // I devised an algorithm to generate the fanout numbers for an item
          // in a sorted manner on demand, meaning we continue generating random
          // numbers for an item only if it has been sampled that many times
          // already.
          // https://gist.github.com/mfbalin/096dcad5e3b1f6a59ff7ff2f9f541618
          //
          // [Complexity Analysis]
          // Will modify the heap at most linear in O(num_neighbors + fanout)
          // and each modification takes O(log(fanout)). So the total complexity
          // is O((fanout + num_neighbors) log(fanout)). It is possible to
          // decrease the logarithmic factor down to
          // O(log(min(fanout, num_neighbors))).
1004
1005
1006
1007
1008
1009
1010
1011
          std::array<float, StackSize> remaining;
          auto remaining_data = remaining.data();
          torch::Tensor remaining_tensor;
          if (num_neighbors > StackSize) {
            remaining_tensor = torch::empty({num_neighbors}, torch::kFloat32);
            remaining_data = remaining_tensor.data_ptr<float>();
          }
          std::fill_n(remaining_data, num_neighbors, 1.f);
1012
1013
1014
1015
1016
          auto heap_end = heap_data;
          const auto init_count = (num_neighbors + fanout - 1) / num_neighbors;
          auto sample_neighbor_i_with_index_t_jth_time =
              [&](scalar_t t, int64_t j, uint32_t i) {
                auto rnd = labor::jth_sorted_uniform_random(
1017
                    args.random_seed, t, args.num_nodes, j, remaining_data[i],
1018
1019
1020
1021
1022
1023
                    fanout - j);  // r_t
                if constexpr (NonUniform) {
                  safe_divide(rnd, local_probs_data[i]);
                }  // r_t / \pi_t
                if (heap_end < heap_data + fanout) {
                  heap_end[0] = std::make_pair(rnd, i);
1024
1025
1026
                  if (++heap_end >= heap_data + fanout) {
                    std::make_heap(heap_data, heap_data + fanout);
                  }
1027
1028
1029
1030
1031
1032
1033
                  return false;
                } else if (rnd < heap_data[0].first) {
                  std::pop_heap(heap_data, heap_data + fanout);
                  heap_data[fanout - 1] = std::make_pair(rnd, i);
                  std::push_heap(heap_data, heap_data + fanout);
                  return false;
                } else {
1034
                  remaining_data[i] = -1;
1035
1036
1037
1038
                  return true;
                }
              };
          for (uint32_t i = 0; i < num_neighbors; ++i) {
1039
            const auto t = local_indices_data[i];
1040
1041
1042
1043
1044
            for (int64_t j = 0; j < init_count; j++) {
              sample_neighbor_i_with_index_t_jth_time(t, j, i);
            }
          }
          for (uint32_t i = 0; i < num_neighbors; ++i) {
1045
            if (remaining_data[i] == -1) continue;
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
            const auto t = local_indices_data[i];
            for (int64_t j = init_count; j < fanout; ++j) {
              if (sample_neighbor_i_with_index_t_jth_time(t, j, i)) break;
            }
          }
        } else {
          // [Algorithm]
          // Use a max-heap to get rid of the big random numbers and filter the
          // smallest fanout of them. Implements arXiv:2210.13339 Section A.3.
          //
          // [Complexity Analysis]
          // the first for loop and std::make_heap runs in time O(fanouts).
          // The next for loop compares each random number to the current
          // minimum fanout numbers. For any given i, the probability that the
          // current random number will replace any number in the heap is fanout
          // / i. Summing from i=fanout to num_neighbors, we get f * (H_n -
          // H_f), where n is num_neighbors and f is fanout, H_f is \sum_j=1^f
          // 1/j. In the end H_n - H_f = O(log n/f), there are n - f iterations,
          // each heap operation takes time log f, so the total complexity is
          // O(f + (n - f)
          // + f log(n/f) log f) = O(n + f log(f) log(n/f)). If f << n (f is a
          // constant in almost all cases), then the average complexity is
          // O(num_neighbors).
          for (uint32_t i = 0; i < fanout; ++i) {
            const auto t = local_indices_data[i];
            auto rnd =
                labor::uniform_random<float>(args.random_seed, t);  // r_t
            if constexpr (NonUniform) {
              safe_divide(rnd, local_probs_data[i]);
            }  // r_t / \pi_t
            heap_data[i] = std::make_pair(rnd, i);
          }
          if (!NonUniform || fanout < num_neighbors) {
            std::make_heap(heap_data, heap_data + fanout);
          }
          for (uint32_t i = fanout; i < num_neighbors; ++i) {
            const auto t = local_indices_data[i];
            auto rnd =
                labor::uniform_random<float>(args.random_seed, t);  // r_t
            if constexpr (NonUniform) {
              safe_divide(rnd, local_probs_data[i]);
            }  // r_t / \pi_t
            if (rnd < heap_data[0].first) {
              std::pop_heap(heap_data, heap_data + fanout);
              heap_data[fanout - 1] = std::make_pair(rnd, i);
              std::push_heap(heap_data, heap_data + fanout);
            }
          }
        }
      }));
  int64_t num_sampled = 0;
1097
1098
1099
1100
1101
1102
  for (int64_t i = 0; i < fanout; ++i) {
    const auto [rnd, j] = heap_data[i];
    if (!NonUniform || rnd < std::numeric_limits<float>::infinity()) {
      picked_data_ptr[num_sampled++] = offset + j;
    }
  }
1103
  return num_sampled;
1104
1105
}

1106
1107
}  // namespace sampling
}  // namespace graphbolt