test_transpose.py 1.51 KB
Newer Older
1
2
3
import sys

import backend as F
4
5
6
import pytest
import torch

7
from dgl.sparse import diag, from_coo
8

Mufei Li's avatar
Mufei Li committed
9
# TODO(#4818): Skipping tests on win.
10
11
12
if not sys.platform.startswith("linux"):
    pytest.skip("skipping tests on win", allow_module_level=True)

13

14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
@pytest.mark.parametrize("val_shape", [(3,), (3, 2)])
@pytest.mark.parametrize("mat_shape", [None, (3, 5), (5, 3)])
def test_diag_matrix_transpose(val_shape, mat_shape):
    ctx = F.ctx()
    val = torch.randn(val_shape).to(ctx)
    mat = diag(val, mat_shape).transpose()

    assert torch.allclose(mat.val, val)
    if mat_shape is None:
        mat_shape = (val_shape[0], val_shape[0])
    assert mat.shape == mat_shape[::-1]


@pytest.mark.parametrize("dense_dim", [None, 2])
@pytest.mark.parametrize("row", [[0, 0, 1, 2], (0, 1, 2, 4)])
@pytest.mark.parametrize("col", [(0, 1, 2, 2), (1, 3, 3, 4)])
@pytest.mark.parametrize("extra_shape", [(0, 1), (2, 1)])
def test_sparse_matrix_transpose(dense_dim, row, col, extra_shape):
    mat_shape = (max(row) + 1 + extra_shape[0], max(col) + 1 + extra_shape[1])
    val_shape = (len(row),)
    if dense_dim is not None:
        val_shape += (dense_dim,)
    ctx = F.ctx()
    val = torch.randn(val_shape).to(ctx)
    row = torch.tensor(row).to(ctx)
    col = torch.tensor(col).to(ctx)
40
    mat = from_coo(row, col, val, mat_shape).transpose()
41
42
43
44
45
46
    mat_row, mat_col = mat.coo()
    mat_val = mat.val

    assert mat.shape == mat_shape[::-1]
    assert torch.allclose(mat_val, val)
    assert torch.allclose(mat_row, col)
47
    assert torch.allclose(mat_col, row)