graph_op.cc 5.12 KB
Newer Older
Minjie Wang's avatar
Minjie Wang committed
1
2
// Graph operation implementation
#include <dgl/graph_op.h>
Minjie Wang's avatar
Minjie Wang committed
3
#include <algorithm>
GaiYu0's avatar
cpp lg  
GaiYu0 committed
4
#include <stdio.h>
Minjie Wang's avatar
Minjie Wang committed
5
6
7

namespace dgl {

GaiYu0's avatar
cpp lg  
GaiYu0 committed
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
Graph GraphOp::LineGraph(const Graph* g, bool backtracking){
  typedef std::pair<dgl_id_t, dgl_id_t> entry;
  typedef std::map<dgl_id_t, std::vector<entry>> csm; // Compressed Sparse Matrix

  csm adj;
  std::vector<entry> vec;
  for (size_t i = 0; i != g->all_edges_src_.size(); ++i) {
    auto u = g->all_edges_src_[i];
    auto v = g->all_edges_dst_[i];
    auto ret = adj.insert(csm::value_type(u, vec));
    (ret.first)->second.push_back(std::make_pair(v, i));
  }

  std::vector<dgl_id_t> lg_src, lg_dst;
  for (size_t i = 0; i != g->all_edges_src_.size(); ++i) {
    auto u = g->all_edges_src_[i];
    auto v = g->all_edges_dst_[i];
    auto j = adj.find(v);
    if (j != adj.end()) {
      for (size_t k = 0; k != j->second.size(); ++k) {
        if (j->second[k].first != u) {
          lg_src.push_back(i);
          lg_dst.push_back(j->second[k].second);
        }
      }
    }
  }

  const int64_t len = lg_src.size();
  IdArray src = IdArray::Empty({len}, DLDataType{kDLInt, 64, 1}, DLContext{kDLCPU, 0});
  IdArray dst = IdArray::Empty({len}, DLDataType{kDLInt, 64, 1}, DLContext{kDLCPU, 0});
  int64_t* src_ptr = static_cast<int64_t*>(src->data);
  int64_t* dst_ptr = static_cast<int64_t*>(dst->data);
  std::copy(lg_src.begin(), lg_src.end(), src_ptr);
  std::copy(lg_dst.begin(), lg_dst.end(), dst_ptr);

  Graph lg;
  lg.AddVertices(g->NumEdges());
  lg.AddEdges(src, dst);
  return lg;
}

Minjie Wang's avatar
Minjie Wang committed
50
51
52
53
54
55
56
57
58
59
60
61
62
Graph GraphOp::DisjointUnion(std::vector<const Graph*> graphs) {
  Graph rst;
  uint64_t cumsum = 0;
  for (const Graph* gr : graphs) {
    rst.AddVertices(gr->NumVertices());
    for (uint64_t i = 0; i < gr->NumEdges(); ++i) {
      rst.AddEdge(gr->all_edges_src_[i] + cumsum, gr->all_edges_dst_[i] + cumsum);
    }
    cumsum += gr->NumVertices();
  }
  return rst;
}

Minjie Wang's avatar
Minjie Wang committed
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
std::vector<Graph> GraphOp::DisjointPartitionByNum(const Graph* graph, int64_t num) {
  CHECK(num != 0 && graph->NumVertices() % num == 0)
    << "Number of partitions must evenly divide the number of nodes.";
  IdArray sizes = IdArray::Empty({num}, DLDataType{kDLInt, 64, 1}, DLContext{kDLCPU, 0});
  int64_t* sizes_data = static_cast<int64_t*>(sizes->data);
  std::fill(sizes_data, sizes_data + num, graph->NumVertices() / num);
  return DisjointPartitionBySizes(graph, sizes);
}
  
std::vector<Graph> GraphOp::DisjointPartitionBySizes(const Graph* graph, IdArray sizes) {
  const int64_t len = sizes->shape[0];
  const int64_t* sizes_data = static_cast<int64_t*>(sizes->data);
  std::vector<int64_t> cumsum;
  cumsum.push_back(0);
  for (int64_t i = 0; i < len; ++i) {
    cumsum.push_back(cumsum[i] + sizes_data[i]);
  }
  CHECK_EQ(cumsum[len], graph->NumVertices())
    << "Sum of the given sizes must equal to the number of nodes.";
  dgl_id_t node_offset = 0, edge_offset = 0;
  std::vector<Graph> rst(len);
  for (int64_t i = 0; i < len; ++i) {
    // copy adj
    rst[i].adjlist_.insert(rst[i].adjlist_.end(),
        graph->adjlist_.begin() + node_offset,
        graph->adjlist_.begin() + node_offset + sizes_data[i]);
    rst[i].reverse_adjlist_.insert(rst[i].reverse_adjlist_.end(),
        graph->reverse_adjlist_.begin() + node_offset,
        graph->reverse_adjlist_.begin() + node_offset + sizes_data[i]);
    // relabel adjs
    size_t num_edges = 0;
    for (auto& elist : rst[i].adjlist_) {
      for (size_t j = 0; j < elist.succ.size(); ++j) {
        elist.succ[j] -= node_offset;
        elist.edge_id[j] -= edge_offset;
      }
      num_edges += elist.succ.size();
    }
    for (auto& elist : rst[i].reverse_adjlist_) {
      for (size_t j = 0; j < elist.succ.size(); ++j) {
        elist.succ[j] -= node_offset;
        elist.edge_id[j] -= edge_offset;
      }
    }
    // copy edges
    rst[i].all_edges_src_.reserve(num_edges);
    rst[i].all_edges_dst_.reserve(num_edges);
    rst[i].num_edges_ = num_edges;
    for (size_t j = edge_offset; j < edge_offset + num_edges; ++j) {
      rst[i].all_edges_src_.push_back(graph->all_edges_src_[j] - node_offset);
      rst[i].all_edges_dst_.push_back(graph->all_edges_dst_[j] - node_offset);
    }
    // update offset
    CHECK_EQ(rst[i].NumVertices(), sizes_data[i]);
    CHECK_EQ(rst[i].NumEdges(), num_edges);
    node_offset += sizes_data[i];
    edge_offset += num_edges;
  }
  /*for (int64_t i = 0; i < len; ++i) {
    rst[i].AddVertices(sizes_data[i]);
  }
  for (dgl_id_t eid = 0; eid < graph->num_edges_; ++eid) {
    const dgl_id_t src = graph->all_edges_src_[eid];
    const dgl_id_t dst = graph->all_edges_dst_[eid];
    size_t src_select = 0, dst_select = 0;
    for (size_t i = 1; i < cumsum.size(); ++i) { // TODO: replace with binary search
      if (cumsum[i] > src) {
        src_select = i;
        break;
      }
    }
    for (size_t i = 1; i < cumsum.size(); ++i) { // TODO: replace with binary search
      if (cumsum[i] > dst) {
        dst_select = i;
        break;
      }
    }
    if (src_select != dst_select) {
      // the edge is ignored if across two partitions
      continue;
    }
    const int64_t offset = cumsum[src_select - 1];
    rst[src_select - 1].AddEdge(src - offset, dst - offset);
  }*/
  return rst;
}

Minjie Wang's avatar
Minjie Wang committed
150
}  // namespace dgl