graph_services.py 22.4 KB
Newer Older
1
"""A set of graph services of getting subgraphs from DistGraph"""
2
3
4
from collections import namedtuple

from .rpc import Request, Response, send_requests_to_machine, recv_responses
Jinjing Zhou's avatar
Jinjing Zhou committed
5
from ..sampling import sample_neighbors as local_sample_neighbors
6
from ..subgraph import in_subgraph as local_in_subgraph
7
from .rpc import register_service
Jinjing Zhou's avatar
Jinjing Zhou committed
8
9
from ..convert import graph
from ..base import NID, EID
10
from ..utils import toindex
Jinjing Zhou's avatar
Jinjing Zhou committed
11
12
from .. import backend as F

13
__all__ = ['sample_neighbors', 'in_subgraph', 'find_edges']
Jinjing Zhou's avatar
Jinjing Zhou committed
14
15

SAMPLING_SERVICE_ID = 6657
16
INSUBGRAPH_SERVICE_ID = 6658
17
EDGES_SERVICE_ID = 6659
18
19
OUTDEGREE_SERVICE_ID = 6660
INDEGREE_SERVICE_ID = 6661
Jinjing Zhou's avatar
Jinjing Zhou committed
20

21
22
class SubgraphResponse(Response):
    """The response for sampling and in_subgraph"""
Jinjing Zhou's avatar
Jinjing Zhou committed
23
24
25
26
27
28
29
30
31
32
33
34

    def __init__(self, global_src, global_dst, global_eids):
        self.global_src = global_src
        self.global_dst = global_dst
        self.global_eids = global_eids

    def __setstate__(self, state):
        self.global_src, self.global_dst, self.global_eids = state

    def __getstate__(self):
        return self.global_src, self.global_dst, self.global_eids

35
36
37
38
39
40
41
42
43
44
45
46
47
class FindEdgeResponse(Response):
    """The response for sampling and in_subgraph"""

    def __init__(self, global_src, global_dst, order_id):
        self.global_src = global_src
        self.global_dst = global_dst
        self.order_id = order_id

    def __setstate__(self, state):
        self.global_src, self.global_dst, self.order_id = state

    def __getstate__(self):
        return self.global_src, self.global_dst, self.order_id
Jinjing Zhou's avatar
Jinjing Zhou committed
48

49
50
51
def _sample_neighbors(local_g, partition_book, seed_nodes, fan_out, edge_dir, prob, replace):
    """ Sample from local partition.

52
53
    The input nodes use global IDs. We need to map the global node IDs to local node IDs,
    perform sampling and map the sampled results to the global IDs space again.
54
    The sampled results are stored in three vectors that store source nodes, destination nodes
55
    and edge IDs.
56
57
58
59
60
    """
    local_ids = partition_book.nid2localnid(seed_nodes, partition_book.partid)
    local_ids = F.astype(local_ids, local_g.idtype)
    # local_ids = self.seed_nodes
    sampled_graph = local_sample_neighbors(
61
        local_g, local_ids, fan_out, edge_dir, prob, replace, _dist_training=True)
62
63
    global_nid_mapping = local_g.ndata[NID]
    src, dst = sampled_graph.edges()
64
65
    global_src, global_dst = F.gather_row(global_nid_mapping, src), \
            F.gather_row(global_nid_mapping, dst)
66
67
68
    global_eids = F.gather_row(local_g.edata[EID], sampled_graph.edata[EID])
    return global_src, global_dst, global_eids

69
70
71
72
73
74
75
76
77
78
79
def _find_edges(local_g, partition_book, seed_edges):
    """Given an edge ID array, return the source
        and destination node ID array ``s`` and ``d`` in the local partition.
    """
    local_eids = partition_book.eid2localeid(seed_edges, partition_book.partid)
    local_eids = F.astype(local_eids, local_g.idtype)
    local_src, local_dst = local_g.find_edges(local_eids)
    global_nid_mapping = local_g.ndata[NID]
    global_src = global_nid_mapping[local_src]
    global_dst = global_nid_mapping[local_dst]
    return global_src, global_dst
80

81
82
83
84
85
86
87
88
89
90
91
92
93
94
def _in_degrees(local_g, partition_book, n):
    """Get in-degree of the nodes in the local partition.
    """
    local_nids = partition_book.nid2localnid(n, partition_book.partid)
    local_nids = F.astype(local_nids, local_g.idtype)
    return local_g.in_degrees(local_nids)

def _out_degrees(local_g, partition_book, n):
    """Get out-degree of the nodes in the local partition.
    """
    local_nids = partition_book.nid2localnid(n, partition_book.partid)
    local_nids = F.astype(local_nids, local_g.idtype)
    return local_g.out_degrees(local_nids)

95
96
97
def _in_subgraph(local_g, partition_book, seed_nodes):
    """ Get in subgraph from local partition.

98
99
    The input nodes use global IDs. We need to map the global node IDs to local node IDs,
    get in-subgraph and map the sampled results to the global IDs space again.
100
    The results are stored in three vectors that store source nodes, destination nodes
101
    and edge IDs.
102
103
104
105
106
107
108
109
110
111
112
113
    """
    local_ids = partition_book.nid2localnid(seed_nodes, partition_book.partid)
    local_ids = F.astype(local_ids, local_g.idtype)
    # local_ids = self.seed_nodes
    sampled_graph = local_in_subgraph(local_g, local_ids)
    global_nid_mapping = local_g.ndata[NID]
    src, dst = sampled_graph.edges()
    global_src, global_dst = global_nid_mapping[src], global_nid_mapping[dst]
    global_eids = F.gather_row(local_g.edata[EID], sampled_graph.edata[EID])
    return global_src, global_dst, global_eids


Jinjing Zhou's avatar
Jinjing Zhou committed
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
class SamplingRequest(Request):
    """Sampling Request"""

    def __init__(self, nodes, fan_out, edge_dir='in', prob=None, replace=False):
        self.seed_nodes = nodes
        self.edge_dir = edge_dir
        self.prob = prob
        self.replace = replace
        self.fan_out = fan_out

    def __setstate__(self, state):
        self.seed_nodes, self.edge_dir, self.prob, self.replace, self.fan_out = state

    def __getstate__(self):
        return self.seed_nodes, self.edge_dir, self.prob, self.replace, self.fan_out

    def process_request(self, server_state):
        local_g = server_state.graph
        partition_book = server_state.partition_book
133
134
135
136
        global_src, global_dst, global_eids = _sample_neighbors(local_g, partition_book,
                                                                self.seed_nodes,
                                                                self.fan_out, self.edge_dir,
                                                                self.prob, self.replace)
137
138
        return SubgraphResponse(global_src, global_dst, global_eids)

139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
class EdgesRequest(Request):
    """Edges Request"""

    def __init__(self, edge_ids, order_id):
        self.edge_ids = edge_ids
        self.order_id = order_id

    def __setstate__(self, state):
        self.edge_ids, self.order_id = state

    def __getstate__(self):
        return self.edge_ids, self.order_id

    def process_request(self, server_state):
        local_g = server_state.graph
        partition_book = server_state.partition_book
        global_src, global_dst = _find_edges(local_g, partition_book, self.edge_ids)

        return FindEdgeResponse(global_src, global_dst, self.order_id)
158

159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
class InDegreeRequest(Request):
    """In-degree Request"""

    def __init__(self, n, order_id):
        self.n = n
        self.order_id = order_id

    def __setstate__(self, state):
        self.n, self.order_id = state

    def __getstate__(self):
        return self.n, self.order_id

    def process_request(self, server_state):
        local_g = server_state.graph
        partition_book = server_state.partition_book
        deg = _in_degrees(local_g, partition_book, self.n)

        return InDegreeResponse(deg, self.order_id)

class InDegreeResponse(Response):
    """The response for in-degree"""

    def __init__(self, deg, order_id):
        self.val = deg
        self.order_id = order_id

    def __setstate__(self, state):
        self.val, self.order_id = state

    def __getstate__(self):
        return self.val, self.order_id

class OutDegreeRequest(Request):
    """Out-degree Request"""

    def __init__(self, n, order_id):
        self.n = n
        self.order_id = order_id

    def __setstate__(self, state):
        self.n, self.order_id = state

    def __getstate__(self):
        return self.n, self.order_id

    def process_request(self, server_state):
        local_g = server_state.graph
        partition_book = server_state.partition_book
        deg = _out_degrees(local_g, partition_book, self.n)

        return OutDegreeResponse(deg, self.order_id)

class OutDegreeResponse(Response):
    """The response for out-degree"""

    def __init__(self, deg, order_id):
        self.val = deg
        self.order_id = order_id

    def __setstate__(self, state):
        self.val, self.order_id = state

    def __getstate__(self):
        return self.val, self.order_id

225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
class InSubgraphRequest(Request):
    """InSubgraph Request"""

    def __init__(self, nodes):
        self.seed_nodes = nodes

    def __setstate__(self, state):
        self.seed_nodes = state

    def __getstate__(self):
        return self.seed_nodes

    def process_request(self, server_state):
        local_g = server_state.graph
        partition_book = server_state.partition_book
        global_src, global_dst, global_eids = _in_subgraph(local_g, partition_book,
                                                           self.seed_nodes)
        return SubgraphResponse(global_src, global_dst, global_eids)
Jinjing Zhou's avatar
Jinjing Zhou committed
243
244
245
246


def merge_graphs(res_list, num_nodes):
    """Merge request from multiple servers"""
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
    if len(res_list) > 1:
        srcs = []
        dsts = []
        eids = []
        for res in res_list:
            srcs.append(res.global_src)
            dsts.append(res.global_dst)
            eids.append(res.global_eids)
        src_tensor = F.cat(srcs, 0)
        dst_tensor = F.cat(dsts, 0)
        eid_tensor = F.cat(eids, 0)
    else:
        src_tensor = res_list[0].global_src
        dst_tensor = res_list[0].global_dst
        eid_tensor = res_list[0].global_eids
262
    g = graph((src_tensor, dst_tensor), num_nodes=num_nodes)
Jinjing Zhou's avatar
Jinjing Zhou committed
263
264
265
    g.edata[EID] = eid_tensor
    return g

266
LocalSampledGraph = namedtuple('LocalSampledGraph', 'global_src global_dst global_eids')
Jinjing Zhou's avatar
Jinjing Zhou committed
267

268
269
def _distributed_access(g, nodes, issue_remote_req, local_access):
    '''A routine that fetches local neighborhood of nodes from the distributed graph.
270

271
272
273
274
275
    The local neighborhood of some nodes are stored in the local machine and the other
    nodes have their neighborhood on remote machines. This code will issue remote
    access requests first before fetching data from the local machine. In the end,
    we combine the data from the local machine and remote machines.
    In this way, we can hide the latency of accessing data on remote machines.
276
277
278
279

    Parameters
    ----------
    g : DistGraph
280
281
282
283
284
285
286
        The distributed graph
    nodes : tensor
        The nodes whose neighborhood are to be fetched.
    issue_remote_req : callable
        The function that issues requests to access remote data.
    local_access : callable
        The function that reads data on the local machine.
287
288
289
290

    Returns
    -------
    DGLHeteroGraph
291
292
        The subgraph that contains the neighborhoods of all input nodes.
    '''
Jinjing Zhou's avatar
Jinjing Zhou committed
293
    req_list = []
294
    partition_book = g.get_partition_book()
295
296
297
    nodes = toindex(nodes).tousertensor()
    partition_id = partition_book.nid2partid(nodes)
    local_nids = None
298
    for pid in range(partition_book.num_partitions()):
299
300
301
302
303
        node_id = F.boolean_mask(nodes, partition_id == pid)
        # We optimize the sampling on a local partition if the server and the client
        # run on the same machine. With a good partitioning, most of the seed nodes
        # should reside in the local partition. If the server and the client
        # are not co-located, the client doesn't have a local partition.
304
        if pid == partition_book.partid and g.local_partition is not None:
305
306
307
            assert local_nids is None
            local_nids = node_id
        elif len(node_id) != 0:
308
            req = issue_remote_req(node_id)
Jinjing Zhou's avatar
Jinjing Zhou committed
309
            req_list.append((pid, req))
310
311
312
313
314
315
316
317
318

    # send requests to the remote machine.
    msgseq2pos = None
    if len(req_list) > 0:
        msgseq2pos = send_requests_to_machine(req_list)

    # sample neighbors for the nodes in the local partition.
    res_list = []
    if local_nids is not None:
319
        src, dst, eids = local_access(g.local_partition, partition_book, local_nids)
320
321
322
323
324
325
326
        res_list.append(LocalSampledGraph(src, dst, eids))

    # receive responses from remote machines.
    if msgseq2pos is not None:
        results = recv_responses(msgseq2pos)
        res_list.extend(results)

327
    sampled_graph = merge_graphs(res_list, g.number_of_nodes())
Jinjing Zhou's avatar
Jinjing Zhou committed
328
329
    return sampled_graph

330
331
332
def sample_neighbors(g, nodes, fanout, edge_dir='in', prob=None, replace=False):
    """Sample from the neighbors of the given nodes from a distributed graph.

333
334
335
    For each node, a number of inbound (or outbound when ``edge_dir == 'out'``) edges
    will be randomly chosen.  The returned graph will contain all the nodes in the
    original graph, but only the sampled edges.
336
337
338

    Node/edge features are not preserved. The original IDs of
    the sampled edges are stored as the `dgl.EID` feature in the returned graph.
Jinjing Zhou's avatar
Jinjing Zhou committed
339

340
341
342
343
344
345
346
347
348
349
350
351
352
    This version provides an experimental support for heterogeneous graphs.
    When the input graph is heterogeneous, the sampled subgraph is still stored in
    the homogeneous graph format. That is, all nodes and edges are assigned with
    unique IDs (in contrast, we typically use a type name and a node/edge ID to
    identify a node or an edge in ``DGLGraph``). We refer to this type of IDs
    as *homogeneous ID*.
    Users can use :func:`dgl.distributed.GraphPartitionBook.map_to_per_ntype`
    and :func:`dgl.distributed.GraphPartitionBook.map_to_per_etype`
    to identify their node/edge types and node/edge IDs of that type.

    For heterogeneous graphs, ``nodes`` can be a dictionary whose key is node type
    and the value is type-specific node IDs; ``nodes`` can also be a tensor of
    *homogeneous ID*.
353
354
355
356

    Parameters
    ----------
    g : DistGraph
357
        The distributed graph..
Da Zheng's avatar
Da Zheng committed
358
    nodes : tensor or dict
359
        Node IDs to sample neighbors from. If it's a dict, it should contain only
Da Zheng's avatar
Da Zheng committed
360
        one key-value pair to make this API consistent with dgl.sampling.sample_neighbors.
361
    fanout : int
362
363
364
        The number of edges to be sampled for each node.

        If -1 is given, all of the neighbors will be selected.
365
    edge_dir : str, optional
366
367
368
        Determines whether to sample inbound or outbound edges.

        Can take either ``in`` for inbound edges or ``out`` for outbound edges.
369
    prob : str, optional
370
371
372
373
374
375
376
        Feature name used as the (unnormalized) probabilities associated with each
        neighboring edge of a node.  The feature must have only one element for each
        edge.

        The features must be non-negative floats, and the sum of the features of
        inbound/outbound edges for every node must be positive (though they don't have
        to sum up to one).  Otherwise, the result will be undefined.
377
378
379
    replace : bool, optional
        If True, sample with replacement.

380
381
382
383
384
        When sampling with replacement, the sampled subgraph could have parallel edges.

        For sampling without replacement, if fanout > the number of neighbors, all the
        neighbors are sampled. If fanout == -1, all neighbors are collected.

385
386
    Returns
    -------
387
388
    DGLGraph
        A sampled subgraph containing only the sampled neighboring edges.  It is on CPU.
389
    """
390
    gpb = g.get_partition_book()
Da Zheng's avatar
Da Zheng committed
391
    if isinstance(nodes, dict):
392
393
394
395
396
397
398
399
400
        homo_nids = []
        for ntype in nodes:
            assert ntype in g.ntypes, 'The sampled node type does not exist in the input graph'
            if F.is_tensor(nodes[ntype]):
                typed_nodes = nodes[ntype]
            else:
                typed_nodes = toindex(nodes[ntype]).tousertensor()
            homo_nids.append(gpb.map_to_homo_nid(typed_nodes, ntype))
        nodes = F.cat(homo_nids, 0)
401
402
403
404
405
406
407
408
    def issue_remote_req(node_ids):
        return SamplingRequest(node_ids, fanout, edge_dir=edge_dir,
                               prob=prob, replace=replace)
    def local_access(local_g, partition_book, local_nids):
        return _sample_neighbors(local_g, partition_book, local_nids,
                                 fanout, edge_dir, prob, replace)
    return _distributed_access(g, nodes, issue_remote_req, local_access)

409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
def _distributed_edge_access(g, edges, issue_remote_req, local_access):
    """A routine that fetches local edges from distributed graph.

    The source and destination nodes of local edges are stored in the local
    machine and others are stored on remote machines. This code will issue
    remote access requests first before fetching data from the local machine.
    In the end, we combine the data from the local machine and remote machines.

    Parameters
    ----------
    g : DistGraph
        The distributed graph
    edges : tensor
        The edges to find their source and destination nodes.
    issue_remote_req : callable
        The function that issues requests to access remote data.
    local_access : callable
        The function that reads data on the local machine.

    Returns
    -------
    tensor
        The source node ID array.
    tensor
        The destination node ID array.
    """
    req_list = []
    partition_book = g.get_partition_book()
    edges = toindex(edges).tousertensor()
    partition_id = partition_book.eid2partid(edges)
    local_eids = None
    reorder_idx = []
    for pid in range(partition_book.num_partitions()):
        mask = (partition_id == pid)
        edge_id = F.boolean_mask(edges, mask)
        reorder_idx.append(F.nonzero_1d(mask))
        if pid == partition_book.partid and g.local_partition is not None:
            assert local_eids is None
            local_eids = edge_id
        elif len(edge_id) != 0:
            req = issue_remote_req(edge_id, pid)
            req_list.append((pid, req))

    # send requests to the remote machine.
    msgseq2pos = None
    if len(req_list) > 0:
        msgseq2pos = send_requests_to_machine(req_list)

    # handle edges in local partition.
    src_ids = F.zeros_like(edges)
    dst_ids = F.zeros_like(edges)
    if local_eids is not None:
        src, dst = local_access(g.local_partition, partition_book, local_eids)
        src_ids = F.scatter_row(src_ids, reorder_idx[partition_book.partid], src)
        dst_ids = F.scatter_row(dst_ids, reorder_idx[partition_book.partid], dst)

    # receive responses from remote machines.
    if msgseq2pos is not None:
        results = recv_responses(msgseq2pos)
        for result in results:
            src = result.global_src
            dst = result.global_dst
            src_ids = F.scatter_row(src_ids, reorder_idx[result.order_id], src)
            dst_ids = F.scatter_row(dst_ids, reorder_idx[result.order_id], dst)
    return src_ids, dst_ids

def find_edges(g, edge_ids):
    """ Given an edge ID array, return the source and destination
    node ID array ``s`` and ``d`` from a distributed graph.
    ``s[i]`` and ``d[i]`` are source and destination node ID for
    edge ``eid[i]``.

    Parameters
    ----------
    g : DistGraph
        The distributed graph.
    edges : tensor
        The edge ID array.

    Returns
    -------
    tensor
        The source node ID array.
    tensor
        The destination node ID array.
    """
495
    def issue_remote_req(edge_ids, order_id):
496
497
498
        return EdgesRequest(edge_ids, order_id)
    def local_access(local_g, partition_book, edge_ids):
        return _find_edges(local_g, partition_book, edge_ids)
499
    return _distributed_edge_access(g, edge_ids, issue_remote_req, local_access)
500

501
def in_subgraph(g, nodes):
502
    """Return the subgraph induced on the inbound edges of the given nodes.
503

504
505
506
507
    The subgraph keeps the same type schema and all the nodes are preserved regardless
    of whether they have an edge or not.

    Node/edge features are not preserved. The original IDs of
508
509
510
511
    the extracted edges are stored as the `dgl.EID` feature in the returned graph.

    For now, we only support the input graph with one node type and one edge type.

512

513
514
515
516
    Parameters
    ----------
    g : DistGraph
        The distributed graph structure.
517
    nodes : tensor or dict
518
519
520
521
        Node ids to sample neighbors from.

    Returns
    -------
522
    DGLGraph
523
        The subgraph.
524
525
526

        One can retrieve the mapping from subgraph edge ID to parent
        edge ID via ``dgl.EID`` edge features of the subgraph.
527
    """
Da Zheng's avatar
Da Zheng committed
528
529
530
    if isinstance(nodes, dict):
        assert len(nodes) == 1, 'The distributed in_subgraph only supports one node type for now.'
        nodes = list(nodes.values())[0]
531
532
533
534
535
536
    def issue_remote_req(node_ids):
        return InSubgraphRequest(node_ids)
    def local_access(local_g, partition_book, local_nids):
        return _in_subgraph(local_g, partition_book, local_nids)
    return _distributed_access(g, nodes, issue_remote_req, local_access)

537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
def _distributed_get_node_property(g, n, issue_remote_req, local_access):
    req_list = []
    partition_book = g.get_partition_book()
    n = toindex(n).tousertensor()
    partition_id = partition_book.nid2partid(n)
    local_nids = None
    reorder_idx = []
    for pid in range(partition_book.num_partitions()):
        mask = (partition_id == pid)
        nid = F.boolean_mask(n, mask)
        reorder_idx.append(F.nonzero_1d(mask))
        if pid == partition_book.partid and g.local_partition is not None:
            assert local_nids is None
            local_nids = nid
        elif len(nid) != 0:
            req = issue_remote_req(nid, pid)
            req_list.append((pid, req))

    # send requests to the remote machine.
    msgseq2pos = None
    if len(req_list) > 0:
        msgseq2pos = send_requests_to_machine(req_list)

    # handle edges in local partition.
    vals = None
    if local_nids is not None:
        local_vals = local_access(g.local_partition, partition_book, local_nids)
        shape = list(F.shape(local_vals))
        shape[0] = len(n)
        vals = F.zeros(shape, F.dtype(local_vals), F.cpu())
        vals = F.scatter_row(vals, reorder_idx[partition_book.partid], local_vals)

    # receive responses from remote machines.
    if msgseq2pos is not None:
        results = recv_responses(msgseq2pos)
        if len(results) > 0 and vals is None:
            shape = list(F.shape(results[0].val))
            shape[0] = len(n)
            vals = F.zeros(shape, F.dtype(results[0].val), F.cpu())
        for result in results:
            val = result.val
            vals = F.scatter_row(vals, reorder_idx[result.order_id], val)
    return vals

def in_degrees(g, v):
    '''Get in-degrees
    '''
    def issue_remote_req(v, order_id):
        return InDegreeRequest(v, order_id)
    def local_access(local_g, partition_book, v):
        return _in_degrees(local_g, partition_book, v)
    return _distributed_get_node_property(g, v, issue_remote_req, local_access)

def out_degrees(g, u):
    '''Get out-degrees
    '''
    def issue_remote_req(u, order_id):
        return OutDegreeRequest(u, order_id)
    def local_access(local_g, partition_book, u):
        return _out_degrees(local_g, partition_book, u)
    return _distributed_get_node_property(g, u, issue_remote_req, local_access)

599
register_service(SAMPLING_SERVICE_ID, SamplingRequest, SubgraphResponse)
600
register_service(EDGES_SERVICE_ID, EdgesRequest, FindEdgeResponse)
601
register_service(INSUBGRAPH_SERVICE_ID, InSubgraphRequest, SubgraphResponse)
602
603
register_service(OUTDEGREE_SERVICE_ID, OutDegreeRequest, OutDegreeResponse)
register_service(INDEGREE_SERVICE_ID, InDegreeRequest, InDegreeResponse)