matrix_ops.cc 2.61 KB
Newer Older
czkkkkkk's avatar
czkkkkkk committed
1
2
3
4
5
6
7
8
/**
 *  Copyright (c) 2023 by Contributors
 * @file matrix_ops.cc
 * @brief DGL C++ matrix operators.
 */
#include <sparse/matrix_ops.h>
#include <torch/script.h>

xiangyuzhi's avatar
xiangyuzhi committed
9
10
11
#include "./macro.h"
#include "./matrix_ops_impl.h"

czkkkkkk's avatar
czkkkkkk committed
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
namespace dgl {
namespace sparse {

/**
 * @brief Compute the intersection of two COO matrices. Return the intersection
 * COO matrix, and the indices of the intersection in the left-hand-side and
 * right-hand-side COO matrices.
 *
 * @param lhs The left-hand-side COO matrix.
 * @param rhs The right-hand-side COO matrix.
 *
 * @return A tuple of COO matrix, lhs indices, and rhs indices.
 */
std::tuple<std::shared_ptr<COO>, torch::Tensor, torch::Tensor> COOIntersection(
    const std::shared_ptr<COO>& lhs, const std::shared_ptr<COO>& rhs) {
  // 1. Encode the two COO matrices into arrays of integers.
  auto lhs_arr =
      lhs->indices.index({0}) * lhs->num_cols + lhs->indices.index({1});
  auto rhs_arr =
      rhs->indices.index({0}) * rhs->num_cols + rhs->indices.index({1});
  // 2. Concatenate the two arrays.
  auto arr = torch::cat({lhs_arr, rhs_arr});
  // 3. Unique the concatenated array.
  torch::Tensor unique, inverse, counts;
  std::tie(unique, inverse, counts) =
      torch::unique_dim(arr, 0, false, true, true);
  // 4. Find the indices of the counts greater than 1 in the unique array.
  auto mask = counts > 1;
  // 5. Map the inverse array to the original array to generate indices.
  auto lhs_inverse = inverse.slice(0, 0, lhs_arr.numel());
  auto rhs_inverse = inverse.slice(0, lhs_arr.numel(), arr.numel());
  auto map_to_original = torch::empty_like(unique);
  map_to_original.index_put_(
      {lhs_inverse},
      torch::arange(lhs_inverse.numel(), map_to_original.options()));
  auto lhs_indices = map_to_original.index({mask});
  map_to_original.index_put_(
      {rhs_inverse},
      torch::arange(rhs_inverse.numel(), map_to_original.options()));
  auto rhs_indices = map_to_original.index({mask});
  // 6. Decode the indices to get the intersection COO matrix.
  auto ret_arr = unique.index({mask});
  auto ret_indices = torch::stack(
      {ret_arr.floor_divide(lhs->num_cols), ret_arr % lhs->num_cols}, 0);
  auto ret_coo = std::make_shared<COO>(
      COO{lhs->num_rows, lhs->num_cols, ret_indices, false, false});
  return {ret_coo, lhs_indices, rhs_indices};
}

xiangyuzhi's avatar
xiangyuzhi committed
61
62
63
64
65
66
67
68
std::tuple<c10::intrusive_ptr<SparseMatrix>, torch::Tensor> Compact(
    const c10::intrusive_ptr<SparseMatrix>& mat, uint64_t dim,
    torch::Tensor leading_indices) {
  DGL_SPARSE_COO_SWITCH(mat->COOPtr(), XPU, IdType, "Compact", {
    return CompactImpl<XPU, IdType>(mat, dim, leading_indices);
  });
}

czkkkkkk's avatar
czkkkkkk committed
69
70
}  // namespace sparse
}  // namespace dgl