"gallery/others/plot_visualization_utils.py" did not exist on "f87ce881e84388daf30905732f8286b8f49e9001"
test_nn.py 3.14 KB
Newer Older
1
2
3
4
5
6
import torch as th
import networkx as nx
import dgl
import dgl.nn.pytorch as nn
from copy import deepcopy

7
8
9
import numpy as np
import scipy as sp

10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
def _AXWb(A, X, W, b):
    X = th.matmul(X, W)
    Y = th.matmul(A, X.view(X.shape[0], -1)).view_as(X)
    return Y + b

def test_graph_conv():
    g = dgl.DGLGraph(nx.path_graph(3))
    adj = g.adjacency_matrix()

    conv = nn.GraphConv(5, 2, norm=False, bias=True)
    print(conv)
    # test#1: basic
    h0 = th.ones((3, 5))
    h1 = conv(h0, g)
    assert th.allclose(h1, _AXWb(adj, h0, conv.weight, conv.bias))
    # test#2: more-dim
    h0 = th.ones((3, 5, 5))
    h1 = conv(h0, g)
    assert th.allclose(h1, _AXWb(adj, h0, conv.weight, conv.bias))

    conv = nn.GraphConv(5, 2)
    # test#3: basic
    h0 = th.ones((3, 5))
    h1 = conv(h0, g)
    # test#4: basic
    h0 = th.ones((3, 5, 5))
    h1 = conv(h0, g)

    conv = nn.GraphConv(5, 2)
    # test#3: basic
    h0 = th.ones((3, 5))
    h1 = conv(h0, g)
    # test#4: basic
    h0 = th.ones((3, 5, 5))
    h1 = conv(h0, g)

    # test rest_parameters
    old_weight = deepcopy(conv.weight.data)
    conv.reset_parameters()
    new_weight = conv.weight.data
    assert not th.allclose(old_weight, new_weight)

def uniform_attention(g, shape):
    a = th.ones(shape)
    target_shape = (g.number_of_edges(),) + (1,) * (len(shape) - 1)
    return a / g.in_degrees(g.edges()[1]).view(target_shape).float()

def test_edge_softmax():
58
59
60
61
62
    # Basic
    g = dgl.DGLGraph(nx.path_graph(3))
    edata = th.ones(g.number_of_edges(), 1)
    a = nn.edge_softmax(g, edata)
    assert th.allclose(a, uniform_attention(g, a.shape))
63

64
65
66
67
    # Test higher dimension case
    edata = th.ones(g.number_of_edges(), 3, 1)
    a = nn.edge_softmax(g, edata)
    assert th.allclose(a, uniform_attention(g, a.shape))
68

69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
    # Test both forward and backward with PyTorch built-in softmax.
    g = dgl.DGLGraph()
    g.add_nodes(30)
    # build a complete graph
    for i in range(30):
        for j in range(30):
            g.add_edge(i, j)

    score = th.rand(900, 1)
    score.requires_grad_()
    grad = th.rand(900, 1)
    y = th.softmax(score.view(30, 30), dim=0).view(-1, 1)
    y.backward(grad)
    grad_score = score.grad
    score.grad.zero_()
    y_dgl = nn.edge_softmax(g, score)
    # check forward
    assert th.allclose(y_dgl, y)
    y_dgl.backward(grad)
    # checkout gradient
    assert th.allclose(score.grad, grad_score)
    print(score.grad[:10], grad_score[:10])
    
    # Test 2
    def generate_rand_graph(n):
      arr = (sp.sparse.random(n, n, density=0.1, format='coo') != 0).astype(np.int64)
      return dgl.DGLGraph(arr, readonly=True)
    
    g = generate_rand_graph(50)
    a1 = th.randn(g.number_of_edges(), 1).requires_grad_()
    a2 = a1.clone().detach().requires_grad_()
    g.edata['s'] = a1
    g.group_apply_edges('dst', lambda edges: {'ss':th.softmax(edges.data['s'], 1)})
    g.edata['ss'].sum().backward()
    
    builtin_sm = nn.edge_softmax(g, a2)
    builtin_sm.sum().backward()
    print(a1.grad - a2.grad)
    assert th.allclose(a1.grad, a2.grad, rtol=1e-4, atol=1e-4) # Follow tolerance in unittest backend
    
109
110
111
112

if __name__ == '__main__':
    test_graph_conv()
    test_edge_softmax()