data_preprocess.py 4.72 KB
Newer Older
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
import os
import sys
import logging
import torch
import numpy as np
from dgl.data import LegacyTUDataset
import json


def _load_check_mark(path:str):
    if os.path.exists(path):
        with open(path, 'r') as f:
            return json.load(f)
    else:
        return {}

def _save_check_mark(path:str, marks:dict):
    with open(path, 'w') as f:
        json.dump(marks, f)


def node_label_as_feature(dataset:LegacyTUDataset, mode="concat", save=True):
    """
    Description
    -----------
    Add node labels to graph node features dict

    Parameters
    ----------
    dataset : LegacyTUDataset
        The dataset object
    concat : str, optional
        How to add node label to the graph. Valid options are "add",
        "replace" and "concat".
        - "add": Directly add node_label to graph node feature dict.
        - "concat": Concatenate "feat" and "node_label"
        - "replace": Use "node_label" as "feat"
        Default: :obj:`"concat"`
    save : bool, optional
        Save the result dataset.
        Default: :obj:`True`
    """
    # check if node label is not available
    if not os.path.exists(dataset._file_path("node_labels")) or len(dataset) == 0:
        logging.warning("No Node Label Data")
        return dataset
    
    # check if has cached value
    check_mark_name = "node_label_as_feature"
    check_mark_path = os.path.join(
        dataset.save_path, "info_{}_{}.json".format(dataset.name, dataset.hash))
    check_mark = _load_check_mark(check_mark_path)
    if check_mark_name in check_mark \
        and check_mark[check_mark_name] \
        and not dataset._force_reload:
        logging.warning("Using cached value in node_label_as_feature")
        return dataset
    logging.warning("Adding node labels into node features..., mode={}".format(mode))
    
    # check if graph has "feat"
    if "feat" not in dataset[0][0].ndata:
        logging.warning("Dataset has no node feature 'feat'")
        if mode.lower() == "concat":
            mode = "replace"
    
    # first read node labels
    DS_node_labels = dataset._idx_from_zero(
        np.loadtxt(dataset._file_path("node_labels"), dtype=int))
    one_hot_node_labels = dataset._to_onehot(DS_node_labels)
    
    # read graph idx
    DS_indicator = dataset._idx_from_zero(
        np.genfromtxt(dataset._file_path("graph_indicator"), dtype=int))
    node_idx_list = []
    for idx in range(np.max(DS_indicator) + 1):
        node_idx = np.where(DS_indicator == idx)
        node_idx_list.append(node_idx[0])
    
    # add to node feature dict
    for idx, g in zip(node_idx_list, dataset.graph_lists):
        node_labels_tensor = torch.tensor(one_hot_node_labels[idx, :])
        if mode.lower() == "concat":
            g.ndata["feat"] = torch.cat(
                (g.ndata["feat"], node_labels_tensor), dim=1)
        elif mode.lower() == "add":
            g.ndata["node_label"] = node_labels_tensor
        else: # replace
            g.ndata["feat"] = node_labels_tensor
    
    if save:
        check_mark[check_mark_name] = True
        _save_check_mark(check_mark_path, check_mark)
        dataset.save()
    return dataset


def degree_as_feature(dataset:LegacyTUDataset, save=True):
    """
    Description
    -----------
    Use node degree (in one-hot format) as node feature

    Parameters
    ----------
    dataset : LegacyTUDataset
        The dataset object

    save : bool, optional
        Save the result dataset.
        Default: :obj:`True`
    """
    # first check if already have such feature
    check_mark_name = "degree_as_feat"
    feat_name = "feat"
    check_mark_path = os.path.join(
        dataset.save_path, "info_{}_{}.json".format(dataset.name, dataset.hash))
    check_mark = _load_check_mark(check_mark_path)

    if check_mark_name in check_mark \
        and check_mark[check_mark_name] \
        and not dataset._force_reload:
        logging.warning("Using cached value in 'degree_as_feature'")
        return dataset

    logging.warning("Adding node degree into node features...")
    min_degree = sys.maxsize
    max_degree = 0
    for i in range(len(dataset)):
        degrees = dataset.graph_lists[i].in_degrees()
        min_degree = min(min_degree, degrees.min().item())
        max_degree = max(max_degree, degrees.max().item())
    
    vec_len = max_degree - min_degree + 1
    for i in range(len(dataset)):
        num_nodes = dataset.graph_lists[i].num_nodes()
        node_feat = torch.zeros((num_nodes, vec_len))
        degrees = dataset.graph_lists[i].in_degrees()
        node_feat[torch.arange(num_nodes), degrees - min_degree] = 1.
        dataset.graph_lists[i].ndata[feat_name] = node_feat

    if save:
        check_mark[check_mark_name] = True
        dataset.save()
        _save_check_mark(check_mark_path, check_mark)
    return dataset