"src/vscode:/vscode.git/clone" did not exist on "8c14ca3d434c1ff5b118f0b18e1db20fea73c51f"
reading_data.py 7.34 KB
Newer Older
1
import os
2
3
4
5
import pickle
import random
import time

Hongzhi (Steve), Chen's avatar
Hongzhi (Steve), Chen committed
6
7
import dgl

8
9
10
import numpy as np
import scipy.sparse as sp
import torch
11
12
13
14
15
16
from dgl.data.utils import (
    _get_dgl_url,
    download,
    extract_archive,
    get_download_dir,
)
Hongzhi (Steve), Chen's avatar
Hongzhi (Steve), Chen committed
17
18
from torch.utils.data import DataLoader
from utils import shuffle_walks
19

20
21

def ReadTxtNet(file_path="", undirected=True):
22
    """Read the txt network file.
23
24
25
26
27
28
29
30
31
32
    Notations: The network is unweighted.

    Parameters
    ----------
    file_path str : path of network file
    undirected bool : whether the edges are undirected

    Return
    ------
    net dict : a dict recording the connections in the graph
33
    node2id dict : a dict mapping the nodes to their embedding indices
34
35
    id2node dict : a dict mapping nodes embedding indices to the nodes
    """
36
    if file_path == "youtube" or file_path == "blog":
37
38
        name = file_path
        dir = get_download_dir()
39
40
41
42
43
44
45
46
        zip_file_path = "{}/{}.zip".format(dir, name)
        download(
            _get_dgl_url(
                os.path.join("dataset/DeepWalk/", "{}.zip".format(file_path))
            ),
            path=zip_file_path,
        )
        extract_archive(zip_file_path, "{}/{}".format(dir, name))
47
48
49
50
51
52
53
54
55
56
57
58
59
        file_path = "{}/{}/{}-net.txt".format(dir, name, name)

    node2id = {}
    id2node = {}
    cid = 0

    src = []
    dst = []
    weight = []
    net = {}
    with open(file_path, "r") as f:
        for line in f.readlines():
            tup = list(map(int, line.strip().split(" ")))
60
61
62
63
            assert len(tup) in [
                2,
                3,
            ], "The format of network file is unrecognizable."
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
            if len(tup) == 3:
                n1, n2, w = tup
            elif len(tup) == 2:
                n1, n2 = tup
                w = 1
            if n1 not in node2id:
                node2id[n1] = cid
                id2node[cid] = n1
                cid += 1
            if n2 not in node2id:
                node2id[n2] = cid
                id2node[cid] = n2
                cid += 1

            n1 = node2id[n1]
            n2 = node2id[n2]
            if n1 not in net:
                net[n1] = {n2: w}
                src.append(n1)
                dst.append(n2)
                weight.append(w)
            elif n2 not in net[n1]:
                net[n1][n2] = w
                src.append(n1)
                dst.append(n2)
                weight.append(w)
90

91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
            if undirected:
                if n2 not in net:
                    net[n2] = {n1: w}
                    src.append(n2)
                    dst.append(n1)
                    weight.append(w)
                elif n1 not in net[n2]:
                    net[n2][n1] = w
                    src.append(n2)
                    dst.append(n1)
                    weight.append(w)

    print("node num: %d" % len(net))
    print("edge num: %d" % len(src))
    assert max(net.keys()) == len(net) - 1, "error reading net, quit"

107
    sm = sp.coo_matrix((np.array(weight), (src, dst)), dtype=np.float32)
108
109
110

    return net, node2id, id2node, sm

111

112
def net2graph(net_sm):
113
    """Transform the network to DGL graph
114

115
    Return
116
117
118
119
    ------
    G DGLGraph : graph by DGL
    """
    start = time.time()
120
    G = dgl.from_scipy(net_sm)
121
122
123
124
125
    end = time.time()
    t = end - start
    print("Building DGLGraph in %.2fs" % t)
    return G

126

127
128
129
130
def make_undirected(G):
    G.add_edges(G.edges()[1], G.edges()[0])
    return G

131

132
def find_connected_nodes(G):
133
    nodes = G.out_degrees().nonzero().squeeze(-1)
134
135
    return nodes

136

137
class DeepwalkDataset:
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
    def __init__(
        self,
        net_file,
        map_file,
        walk_length,
        window_size,
        num_walks,
        batch_size,
        negative=5,
        gpus=[0],
        fast_neg=True,
        ogbl_name="",
        load_from_ogbl=False,
    ):
        """This class has the following functions:
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
        1. Transform the txt network file into DGL graph;
        2. Generate random walk sequences for the trainer;
        3. Provide the negative table if the user hopes to sample negative
        nodes according to nodes' degrees;

        Parameter
        ---------
        net_file str : path of the txt network file
        walk_length int : number of nodes in a sequence
        window_size int : context window size
        num_walks int : number of walks for each node
        batch_size int : number of node sequences in each batch
        negative int : negative samples for each positve node pair
        fast_neg bool : whether do negative sampling inside a batch
        """
        self.walk_length = walk_length
        self.window_size = window_size
        self.num_walks = num_walks
        self.batch_size = batch_size
        self.negative = negative
        self.num_procs = len(gpus)
        self.fast_neg = fast_neg
175
176

        if load_from_ogbl:
177
178
179
            assert (
                len(gpus) == 1
            ), "ogb.linkproppred is not compatible with multi-gpu training (CUDA error)."
180
            from load_dataset import load_from_ogbl_with_name
181

182
183
184
185
186
187
188
            self.G = load_from_ogbl_with_name(ogbl_name)
            self.G = make_undirected(self.G)
        else:
            self.net, self.node2id, self.id2node, self.sm = ReadTxtNet(net_file)
            self.save_mapping(map_file)
            self.G = net2graph(self.sm)

189
        self.num_nodes = self.G.num_nodes()
190
191
192

        # random walk seeds
        start = time.time()
193
194
        self.valid_seeds = find_connected_nodes(self.G)
        if len(self.valid_seeds) != self.num_nodes:
195
196
197
198
            print(
                "WARNING: The node ids are not serial. Some nodes are invalid."
            )

199
        seeds = torch.cat([torch.LongTensor(self.valid_seeds)] * num_walks)
200
201
202
203
204
205
206
        self.seeds = torch.split(
            shuffle_walks(seeds),
            int(
                np.ceil(len(self.valid_seeds) * self.num_walks / self.num_procs)
            ),
            0,
        )
207
208
209
210
211
212
        end = time.time()
        t = end - start
        print("%d seeds in %.2fs" % (len(seeds), t))

        # negative table for true negative sampling
        if not fast_neg:
213
            node_degree = self.G.out_degrees(self.valid_seeds).numpy()
214
215
216
217
            node_degree = np.power(node_degree, 0.75)
            node_degree /= np.sum(node_degree)
            node_degree = np.array(node_degree * 1e8, dtype=np.int)
            self.neg_table = []
218

219
            for idx, node in enumerate(self.valid_seeds):
220
221
222
223
224
                self.neg_table += [node] * node_degree[idx]
            self.neg_table_size = len(self.neg_table)
            self.neg_table = np.array(self.neg_table, dtype=np.long)
            del node_degree

225
    def create_sampler(self, i):
226
        """create random walk sampler"""
227
        return DeepwalkSampler(self.G, self.seeds[i], self.walk_length)
228
229

    def save_mapping(self, map_file):
230
        """save the mapping dict that maps node IDs to embedding indices"""
231
232
233
        with open(map_file, "wb") as f:
            pickle.dump(self.node2id, f)

234

235
236
class DeepwalkSampler(object):
    def __init__(self, G, seeds, walk_length):
237
238
        """random walk sampler

239
240
241
242
243
244
        Parameter
        ---------
        G dgl.Graph : the input graph
        seeds torch.LongTensor : starting nodes
        walk_length int : walk length
        """
245
246
247
        self.G = G
        self.seeds = seeds
        self.walk_length = walk_length
248

249
    def sample(self, seeds):
250
251
252
        walks = dgl.sampling.random_walk(
            self.G, seeds, length=self.walk_length - 1
        )[0]
253
        return walks