test_sparse_ops-csr.py 9.44 KB
Newer Older
1
import backend as F
2

3
import dgl
4
import numpy as np
5
import pytest
6
import scipy.sparse as ssp
7
from utils import parametrize_idtype
8

9
if F.backend_name == "pytorch":
10
    import torch
11

12
13
    torch.backends.cuda.matmul.allow_tf32 = False

14
15
16
17

def _random_simple_graph(
    idtype, dtype, ctx, M, N, max_nnz, srctype, dsttype, etype
):
18
19
20
21
22
23
    src = np.random.randint(0, M, (max_nnz,))
    dst = np.random.randint(0, N, (max_nnz,))
    val = np.random.randn(max_nnz)
    a = ssp.csr_matrix((val, (src, dst)), shape=(M, N))
    a.sum_duplicates()
    a = a.tocoo()
24
25
26
27
28
29
30
    # shuffle edges
    perm = np.random.permutation(a.nnz)
    row = a.row[perm]
    col = a.col[perm]
    val = a.data[perm]
    a = ssp.csr_matrix((val, (row, col)), shape=(M, N))

31
    A = dgl.heterograph(
32
33
34
35
36
37
38
39
40
        {
            (srctype, etype, dsttype): (
                F.copy_to(F.tensor(row, dtype=idtype), ctx),
                F.copy_to(F.tensor(col, dtype=idtype), ctx),
            )
        },
        num_nodes_dict={srctype: a.shape[0], dsttype: a.shape[1]},
    )
    A.edata["w"] = F.copy_to(F.tensor(val, dtype=dtype), ctx)
41
42
    return a, A

43

nv-dlasalle's avatar
nv-dlasalle committed
44
@parametrize_idtype
45
@pytest.mark.parametrize("dtype", [F.float32, F.float64])
46
def test_csrmm(idtype, dtype):
47
48
49
50
51
52
53
54
55
56
    a, A = _random_simple_graph(
        idtype, dtype, F.ctx(), 500, 600, 9000, "A", "B", "AB"
    )
    b, B = _random_simple_graph(
        idtype, dtype, F.ctx(), 600, 700, 9000, "B", "C", "BC"
    )
    C, C_weights = dgl._sparse_ops._csrmm(
        A._graph, A.edata["w"], B._graph, B.edata["w"], 2
    )
    C_adj = C.adjacency_matrix_scipy(0, False, "csr")
57
58
59
60
61
    C_adj.data = F.asnumpy(C_weights)
    C_adj = F.tensor(C_adj.todense(), dtype=dtype)
    c = F.tensor((a * b).todense(), dtype=dtype)
    assert F.allclose(C_adj, c)

62

nv-dlasalle's avatar
nv-dlasalle committed
63
@parametrize_idtype
64
65
@pytest.mark.parametrize("dtype", [F.float32, F.float64])
@pytest.mark.parametrize("num_vtypes", [1, 2])
66
def test_csrmm_backward(idtype, dtype, num_vtypes):
67
68
69
70
71
72
73
74
75
76
77
78
79
80
    a, A = _random_simple_graph(idtype, dtype, F.ctx(), 3, 4, 6, "A", "B", "AB")
    b, B = _random_simple_graph(
        idtype,
        dtype,
        F.ctx(),
        4,
        3,
        6,
        "B",
        "A" if num_vtypes == 1 else "C",
        "BA",
    )
    A_row, A_col = A.edges(order="eid")
    B_row, B_col = B.edges(order="eid")
81
82
83
84
85
86
87
    A_row = F.asnumpy(A_row)
    A_col = F.asnumpy(A_col)
    B_row = F.asnumpy(B_row)
    B_col = F.asnumpy(B_col)
    a_dense = F.attach_grad(F.tensor(a.todense(), dtype=dtype))
    b_dense = F.attach_grad(F.tensor(b.todense(), dtype=dtype))

88
89
    A.edata["w"] = F.attach_grad(A.edata["w"])
    B.edata["w"] = F.attach_grad(B.edata["w"])
90
91

    with F.record_grad():
92
        C = dgl.adj_product_graph(A, B, "w")
93
94
95
        assert len(C.ntypes) == num_vtypes
        assert len(C.etypes) == 1
        C_dense = np.zeros((3, 3))
96
        C_row, C_col = C.edges(order="eid")
97
98
        C_row = F.asnumpy(C_row)
        C_col = F.asnumpy(C_col)
99
        C_dense[C_row, C_col] = F.asnumpy(C.edata["w"])
100
101
102
        c_dense = F.matmul(a_dense, b_dense)
        assert np.allclose(C_dense, F.asnumpy(c_dense), rtol=1e-4, atol=1e-4)

103
        F.backward(F.reduce_sum(C.edata["w"]) + F.reduce_sum(c_dense))
104
105
        a_dense_grad = F.asnumpy(F.grad(a_dense))[A_row, A_col]
        b_dense_grad = F.asnumpy(F.grad(b_dense))[B_row, B_col]
106
107
        A_spspmm_grad = F.asnumpy(F.grad(A.edata["w"]))
        B_spspmm_grad = F.asnumpy(F.grad(B.edata["w"]))
108
109
110
        assert np.allclose(a_dense_grad, A_spspmm_grad, rtol=1e-4, atol=1e-4)
        assert np.allclose(b_dense_grad, B_spspmm_grad, rtol=1e-4, atol=1e-4)

111

nv-dlasalle's avatar
nv-dlasalle committed
112
@parametrize_idtype
113
@pytest.mark.parametrize("dtype", [F.float32, F.float64])
114
def test_csrsum(idtype, dtype):
115
116
117
118
119
120
121
122
123
124
    a, A = _random_simple_graph(
        idtype, dtype, F.ctx(), 500, 600, 9000, "A", "B", "AB"
    )
    b, B = _random_simple_graph(
        idtype, dtype, F.ctx(), 500, 600, 9000, "A", "B", "AB"
    )
    C, C_weights = dgl._sparse_ops._csrsum(
        [A._graph, B._graph], [A.edata["w"], B.edata["w"]]
    )
    C_adj = C.adjacency_matrix_scipy(0, False, "csr")
125
126
127
128
129
    C_adj.data = F.asnumpy(C_weights)
    C_adj = F.tensor(C_adj.todense(), dtype=dtype)
    c = F.tensor((a + b).todense(), dtype=dtype)
    assert F.allclose(C_adj, c)

130

nv-dlasalle's avatar
nv-dlasalle committed
131
@parametrize_idtype
132
133
@pytest.mark.parametrize("dtype", [F.float32, F.float64])
@pytest.mark.parametrize("nelems", [1, 2])
134
def test_csrsum_backward(idtype, dtype, nelems):
135
136
137
138
    a, A = _random_simple_graph(idtype, dtype, F.ctx(), 3, 4, 6, "A", "B", "AB")
    b, B = _random_simple_graph(idtype, dtype, F.ctx(), 3, 4, 6, "A", "B", "AB")
    A_row, A_col = A.edges(order="eid")
    B_row, B_col = B.edges(order="eid")
139
140
141
142
143
144
145
    A_row = F.asnumpy(A_row)
    A_col = F.asnumpy(A_col)
    B_row = F.asnumpy(B_row)
    B_col = F.asnumpy(B_col)
    a_dense = F.attach_grad(F.tensor(a.todense(), dtype=dtype))
    b_dense = F.attach_grad(F.tensor(b.todense(), dtype=dtype))

146
147
    A.edata["w"] = F.attach_grad(A.edata["w"])
    B.edata["w"] = F.attach_grad(B.edata["w"])
148
149
150
151

    with F.record_grad():
        if nelems == 2:
            # Test for two element case
152
            C = dgl.adj_sum_graph([A, B], "w")
153
154
            assert C.canonical_etypes == A.canonical_etypes
            C_dense = np.zeros((3, 4))
155
            C_row, C_col = C.edges(order="eid")
156
157
            C_row = F.asnumpy(C_row)
            C_col = F.asnumpy(C_col)
158
            C_dense[C_row, C_col] = F.asnumpy(C.edata["w"])
159
            c_dense = a_dense + b_dense
160
161
162
            assert np.allclose(
                C_dense, F.asnumpy(c_dense), rtol=1e-4, atol=1e-4
            )
163

164
            F.backward(F.reduce_sum(C.edata["w"]) + F.reduce_sum(c_dense))
165
166
            a_dense_grad = F.asnumpy(F.grad(a_dense))[A_row, A_col]
            b_dense_grad = F.asnumpy(F.grad(b_dense))[B_row, B_col]
167
168
169
170
171
172
173
174
            A_spspmm_grad = F.asnumpy(F.grad(A.edata["w"]))
            B_spspmm_grad = F.asnumpy(F.grad(B.edata["w"]))
            assert np.allclose(
                a_dense_grad, A_spspmm_grad, rtol=1e-4, atol=1e-4
            )
            assert np.allclose(
                b_dense_grad, B_spspmm_grad, rtol=1e-4, atol=1e-4
            )
175
176
        elif nelems == 1:
            # Test for single element case
177
            C = dgl.adj_sum_graph([A], "w")
178
179
            assert C.canonical_etypes == A.canonical_etypes
            C_dense = np.zeros((3, 4))
180
            C_row, C_col = C.edges(order="eid")
181
182
            C_row = F.asnumpy(C_row)
            C_col = F.asnumpy(C_col)
183
            C_dense[C_row, C_col] = F.asnumpy(C.edata["w"])
184
            c_dense = a_dense
185
186
187
            assert np.allclose(
                C_dense, F.asnumpy(c_dense), rtol=1e-4, atol=1e-4
            )
188

189
            F.backward(F.reduce_sum(C.edata["w"]) + F.reduce_sum(c_dense))
190
            a_dense_grad = F.asnumpy(F.grad(a_dense))[A_row, A_col]
191
192
193
194
195
            A_spspmm_grad = F.asnumpy(F.grad(A.edata["w"]))
            assert np.allclose(
                a_dense_grad, A_spspmm_grad, rtol=1e-4, atol=1e-4
            )

196

nv-dlasalle's avatar
nv-dlasalle committed
197
@parametrize_idtype
198
199
200
@pytest.mark.parametrize("dtype", [F.float32, F.float64])
@pytest.mark.parametrize("A_nnz", [9000, 0])
@pytest.mark.parametrize("B_nnz", [9000, 0])
201
def test_csrmask(idtype, dtype, A_nnz, B_nnz):
202
203
204
205
206
207
208
209
    a, A = _random_simple_graph(
        idtype, dtype, F.ctx(), 500, 600, A_nnz, "A", "B", "AB"
    )
    b, B = _random_simple_graph(
        idtype, dtype, F.ctx(), 500, 600, B_nnz, "A", "B", "AB"
    )
    C = dgl._sparse_ops._csrmask(A._graph, A.edata["w"], B._graph)
    B_row, B_col = B.edges(order="eid")
210
211
212
213
    B_row = F.asnumpy(B_row)
    B_col = F.asnumpy(B_col)
    c = F.tensor(a.todense()[B_row, B_col], dtype)
    assert F.allclose(C, c)
214

215

nv-dlasalle's avatar
nv-dlasalle committed
216
@parametrize_idtype
217
@pytest.mark.parametrize("dtype", [F.float32, F.float64])
218
def test_csrmask_backward(idtype, dtype):
219
220
221
222
    a, A = _random_simple_graph(idtype, dtype, F.ctx(), 3, 4, 6, "A", "B", "AB")
    b, B = _random_simple_graph(idtype, dtype, F.ctx(), 3, 4, 6, "A", "B", "AB")
    A_row, A_col = A.edges(order="eid")
    B_row, B_col = B.edges(order="eid")
223
224
225
226
227
228
    A_row = F.asnumpy(A_row)
    A_col = F.asnumpy(A_col)
    B_row = F.asnumpy(B_row)
    B_col = F.asnumpy(B_col)
    a_dense = F.attach_grad(F.tensor(a.todense(), dtype=dtype))

229
    A.edata["w"] = F.attach_grad(A.edata["w"])
230
231
232

    with F.record_grad():
        # Test for two element case
233
234
        C1 = F.csrmask(A._graph, A.edata["w"], B._graph)
        if dgl.backend.backend_name == "tensorflow":
235
            import tensorflow as tf
236

237
238
239
240
241
242
243
            C2 = tf.gather_nd(a_dense, tf.stack([B_row, B_col], 1))
        else:
            C2 = a_dense[B_row, B_col]
        assert F.allclose(C1, C2, rtol=1e-4, atol=1e-4)

        F.backward(F.reduce_sum(C1) + F.reduce_sum(C2))
        a_dense_grad = F.asnumpy(F.grad(a_dense))[A_row, A_col]
244
        A_spspmm_grad = F.asnumpy(F.grad(A.edata["w"]))
245
246
        assert np.allclose(a_dense_grad, A_spspmm_grad, rtol=1e-4, atol=1e-4)

247

248
if __name__ == "__main__":
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
    test_csrmm(F.int32, F.float32)
    test_csrmm(F.int64, F.float32)
    test_csrsum(F.int32, F.float32)
    test_csrsum(F.int64, F.float32)
    test_csrmask(F.int32, F.float32, 9000, 9000)
    test_csrmask(F.int64, F.float32, 9000, 0)
    test_csrmask(F.int32, F.float32, 0, 9000)
    test_csrmask(F.int64, F.float32, 0, 0)
    test_csrmm_backward(F.int32, F.float32, 1)
    test_csrmm_backward(F.int64, F.float32, 1)
    test_csrmm_backward(F.int32, F.float32, 2)
    test_csrmm_backward(F.int64, F.float32, 2)
    test_csrsum_backward(F.int32, F.float32, 1)
    test_csrsum_backward(F.int64, F.float32, 1)
    test_csrsum_backward(F.int32, F.float32, 2)
    test_csrsum_backward(F.int64, F.float32, 2)
    test_csrmask_backward(F.int32, F.float32)
    test_csrmask_backward(F.int64, F.float32)