sgc.py 4.95 KB
Newer Older
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
"""
This code was modified from implementations of SGC in other backends.

Simplifying Graph Convolutional Networks (Wu, Zhang and Souza et al, 2019)
Paper: https://arxiv.org/abs/1902.07153
Author Implementation: https://github.com/Tiiiger/SGC

SGC implementation in DGL.
"""
import argparse
import textwrap

import tensorflow as tf
import tensorflow_addons as tfa

from dgl.data import CiteseerGraphDataset, CoraGraphDataset, PubmedGraphDataset
from dgl.nn.tensorflow.conv import SGConv


_DATASETS = {
    'citeseer': CiteseerGraphDataset(verbose=False),
    'cora': CoraGraphDataset(verbose=False),
    'pubmed': PubmedGraphDataset(verbose=False)
}


def load_data(dataset):
    return _DATASETS[dataset]


def _sum_boolean_tensor(x):
    return tf.reduce_sum(tf.cast(x, dtype='int64'))


def describe_data(data):
    g = data[0]

    n_edges = g.number_of_edges()
    num_classes = data.num_classes

    train_mask = g.ndata['train_mask']
    val_mask = g.ndata['val_mask']
    test_mask = g.ndata['test_mask']

    description = textwrap.dedent(
        f"""
        ----Data statistics----
        Edges           {n_edges:,.0f}
        Classes         {num_classes:,.0f}
        Train samples   {_sum_boolean_tensor(train_mask):,.0f}
        Val samples     {_sum_boolean_tensor(val_mask):,.0f}
        Test samples    {_sum_boolean_tensor(test_mask):,.0f}
        """
    )
    return description


class SGC(tf.keras.Model):
    def __init__(self, g, num_classes, bias=False):
        super().__init__()
        self.num_classes = num_classes
        self.g = self.ensure_self_loop(g)
        self.conv = SGConv(
            in_feats=self.in_feats,
            out_feats=self.num_classes,
            k=2,
            cached=True,
            bias=bias
        )

    def call(self, inputs):
        return self.conv(self.g, inputs)

    @property
    def in_feats(self):
        return self.g.ndata['feat'].shape[1]

    @property
    def num_nodes(self):
        return self.g.num_nodes()

    @staticmethod
    def ensure_self_loop(g):
        g = g.remove_self_loop()
        g = g.add_self_loop()
        return g

    def train_step(self, data):
        X, y = data
        mask = self.g.ndata['train_mask']

        with tf.GradientTape() as tape:
            y_pred = self(X, training=True)
            loss = self.compiled_loss(y[mask], y_pred[mask])

        trainable_variables = self.trainable_variables
        gradients = tape.gradient(loss, trainable_variables)
        self.optimizer.apply_gradients(zip(gradients, trainable_variables))
        self.compiled_metrics.update_state(y[mask], y_pred[mask])
        return {m.name: m.result() for m in self.metrics}

    def test_step(self, data):
        X, y = data
        mask = self.g.ndata['val_mask']
        y_pred = self(X, training=False)
        self.compiled_loss(y[mask], y_pred[mask])
        self.compiled_metrics.update_state(y[mask], y_pred[mask])
        return {m.name: m.result() for m in self.metrics}

    def compile(self, *args, **kwargs):
        super().compile(*args, **kwargs, run_eagerly=True)

    def fit(self, *args, **kwargs):
        kwargs['batch_size'] = self.num_nodes
        kwargs['shuffle'] = False
        super().fit(*args, **kwargs)

    def predict(self, *args, **kwargs):
        kwargs['batch_size'] = self.num_nodes
        return super().predict(*args, **kwargs)


def main(dataset, lr, bias, n_epochs, weight_decay):
    data = load_data(dataset)
    print(describe_data(data))

    g = data[0]
    X = g.ndata['feat']
    y = g.ndata['label']

    model = SGC(g=g, num_classes=data.num_classes, bias=bias)

    loss = tf.losses.SparseCategoricalCrossentropy(from_logits=True)
    optimizer = tfa.optimizers.AdamW(weight_decay, lr)
    accuracy = tf.metrics.SparseCategoricalAccuracy(name='accuracy')

    model.compile(optimizer, loss, metrics=[accuracy])
    model.fit(
        x=X,
        y=y,
        epochs=n_epochs,
        validation_data=(X, y)
    )

    y_pred = model.predict(X, batch_size=len(X))
    test_mask = g.ndata['test_mask']
    test_accuracy = accuracy(y[test_mask], y_pred[test_mask])
    print(f"Test Accuracy: {test_accuracy:.1%}")


def _parse_args():
    parser = argparse.ArgumentParser(
        description='Run experiment for Simple Graph Convolution (SGC)'
    )
    parser.add_argument(
        "--dataset", default='cora', help="dataset to run"
    )
    parser.add_argument(
        "--lr", type=float, default=0.2, help="learning rate"
    )
    parser.add_argument(
        "--bias", action='store_true', default=False, help="flag to use bias"
    )
    parser.add_argument(
        "--n-epochs", type=int, default=100, help="number of training epochs"
    )
    parser.add_argument(
        "--weight-decay", type=float, default=5e-6, help="weight for L2 loss"
    )
    return parser.parse_args()


if __name__ == '__main__':
    args = _parse_args()
    main(
        dataset=args.dataset,
        lr=args.lr,
        bias=args.bias,
        n_epochs=args.n_epochs,
        weight_decay=args.weight_decay
    )