node_classification.py 28.3 KB
Newer Older
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
"""
Modeling Relational Data with Graph Convolutional Networks
Paper: https://arxiv.org/abs/1703.06103
Code: https://github.com/tkipf/relational-gcn
Difference compared to tkipf/relation-gcn
* l2norm applied to all weights
* remove nodes that won't be touched
"""
import argparse
import gc, os
import itertools
import time

import numpy as np

os.environ["DGLBACKEND"] = "pytorch"

from functools import partial

import dgl
import torch as th
import torch.multiprocessing as mp
import torch.nn as nn
import torch.nn.functional as F

import tqdm
from dgl import DGLGraph, nn as dglnn
from dgl.distributed import DistDataLoader

from ogb.nodeproppred import DglNodePropPredDataset
from torch.multiprocessing import Queue
from torch.nn.parallel import DistributedDataParallel
from torch.utils.data import DataLoader


class RelGraphConvLayer(nn.Module):
    r"""Relational graph convolution layer.
    Parameters
    ----------
    in_feat : int
        Input feature size.
    out_feat : int
        Output feature size.
    rel_names : list[str]
        Relation names.
    num_bases : int, optional
        Number of bases. If is none, use number of relations. Default: None.
    weight : bool, optional
        True if a linear layer is applied after message passing. Default: True
    bias : bool, optional
        True if bias is added. Default: True
    activation : callable, optional
        Activation function. Default: None
    self_loop : bool, optional
        True to include self loop message. Default: False
    dropout : float, optional
        Dropout rate. Default: 0.0
    """

    def __init__(
        self,
        in_feat,
        out_feat,
        rel_names,
        num_bases,
        *,
        weight=True,
        bias=True,
        activation=None,
        self_loop=False,
        dropout=0.0
    ):
        super(RelGraphConvLayer, self).__init__()
        self.in_feat = in_feat
        self.out_feat = out_feat
        self.rel_names = rel_names
        self.num_bases = num_bases
        self.bias = bias
        self.activation = activation
        self.self_loop = self_loop

        self.conv = dglnn.HeteroGraphConv(
            {
                rel: dglnn.GraphConv(
                    in_feat, out_feat, norm="right", weight=False, bias=False
                )
                for rel in rel_names
            }
        )

        self.use_weight = weight
        self.use_basis = num_bases < len(self.rel_names) and weight
        if self.use_weight:
            if self.use_basis:
                self.basis = dglnn.WeightBasis(
                    (in_feat, out_feat), num_bases, len(self.rel_names)
                )
            else:
                self.weight = nn.Parameter(
                    th.Tensor(len(self.rel_names), in_feat, out_feat)
                )
                nn.init.xavier_uniform_(
                    self.weight, gain=nn.init.calculate_gain("relu")
                )

        # bias
        if bias:
            self.h_bias = nn.Parameter(th.Tensor(out_feat))
            nn.init.zeros_(self.h_bias)

        # weight for self loop
        if self.self_loop:
            self.loop_weight = nn.Parameter(th.Tensor(in_feat, out_feat))
            nn.init.xavier_uniform_(
                self.loop_weight, gain=nn.init.calculate_gain("relu")
            )

        self.dropout = nn.Dropout(dropout)

    def forward(self, g, inputs):
        """Forward computation
        Parameters
        ----------
        g : DGLGraph
            Input graph.
        inputs : dict[str, torch.Tensor]
            Node feature for each node type.
        Returns
        -------
        dict[str, torch.Tensor]
            New node features for each node type.
        """
        g = g.local_var()
        if self.use_weight:
            weight = self.basis() if self.use_basis else self.weight
            wdict = {
                self.rel_names[i]: {"weight": w.squeeze(0)}
                for i, w in enumerate(th.split(weight, 1, dim=0))
            }
        else:
            wdict = {}

        if g.is_block:
            inputs_src = inputs
            inputs_dst = {
                k: v[: g.number_of_dst_nodes(k)] for k, v in inputs.items()
            }
        else:
            inputs_src = inputs_dst = inputs

        hs = self.conv(g, inputs, mod_kwargs=wdict)

        def _apply(ntype, h):
            if self.self_loop:
                h = h + th.matmul(inputs_dst[ntype], self.loop_weight)
            if self.bias:
                h = h + self.h_bias
            if self.activation:
                h = self.activation(h)
            return self.dropout(h)

        return {ntype: _apply(ntype, h) for ntype, h in hs.items()}


class EntityClassify(nn.Module):
    """Entity classification class for RGCN
    Parameters
    ----------
    device : int
        Device to run the layer.
    num_nodes : int
        Number of nodes.
    h_dim : int
        Hidden dim size.
    out_dim : int
        Output dim size.
    rel_names : list of str
        A list of relation names.
    num_bases : int
        Number of bases. If is none, use number of relations.
    num_hidden_layers : int
        Number of hidden RelGraphConv Layer
    dropout : float
        Dropout
    use_self_loop : bool
        Use self loop if True, default False.
    """

    def __init__(
        self,
        device,
        h_dim,
        out_dim,
        rel_names,
        num_bases=None,
        num_hidden_layers=1,
        dropout=0,
        use_self_loop=False,
        layer_norm=False,
    ):
        super(EntityClassify, self).__init__()
        self.device = device
        self.h_dim = h_dim
        self.out_dim = out_dim
        self.num_bases = None if num_bases < 0 else num_bases
        self.num_hidden_layers = num_hidden_layers
        self.dropout = dropout
        self.use_self_loop = use_self_loop
        self.layer_norm = layer_norm

        self.layers = nn.ModuleList()
        # i2h
        self.layers.append(
            RelGraphConvLayer(
                self.h_dim,
                self.h_dim,
                rel_names,
                self.num_bases,
                activation=F.relu,
                self_loop=self.use_self_loop,
                dropout=self.dropout,
            )
        )
        # h2h
        for idx in range(self.num_hidden_layers):
            self.layers.append(
                RelGraphConvLayer(
                    self.h_dim,
                    self.h_dim,
                    rel_names,
                    self.num_bases,
                    activation=F.relu,
                    self_loop=self.use_self_loop,
                    dropout=self.dropout,
                )
            )
        # h2o
        self.layers.append(
            RelGraphConvLayer(
                self.h_dim,
                self.out_dim,
                rel_names,
                self.num_bases,
                activation=None,
                self_loop=self.use_self_loop,
            )
        )

    def forward(self, blocks, feats, norm=None):
        if blocks is None:
            # full graph training
            blocks = [self.g] * len(self.layers)
        h = feats
        for layer, block in zip(self.layers, blocks):
            block = block.to(self.device)
            h = layer(block, h)
        return h


def init_emb(shape, dtype):
    arr = th.zeros(shape, dtype=dtype)
    nn.init.uniform_(arr, -1.0, 1.0)
    return arr


class DistEmbedLayer(nn.Module):
    r"""Embedding layer for featureless heterograph.
    Parameters
    ----------
    dev_id : int
        Device to run the layer.
    g : DistGraph
        training graph
    embed_size : int
        Output embed size
    sparse_emb: bool
        Whether to use sparse embedding
        Default: False
    dgl_sparse_emb: bool
        Whether to use DGL sparse embedding
        Default: False
    embed_name : str, optional
        Embed name
    """

    def __init__(
        self,
        dev_id,
        g,
        embed_size,
        sparse_emb=False,
        dgl_sparse_emb=False,
        feat_name="feat",
        embed_name="node_emb",
    ):
        super(DistEmbedLayer, self).__init__()
        self.dev_id = dev_id
        self.embed_size = embed_size
        self.embed_name = embed_name
        self.feat_name = feat_name
        self.sparse_emb = sparse_emb
        self.g = g
        self.ntype_id_map = {g.get_ntype_id(ntype): ntype for ntype in g.ntypes}

        self.node_projs = nn.ModuleDict()
        for ntype in g.ntypes:
            if feat_name in g.nodes[ntype].data:
                self.node_projs[ntype] = nn.Linear(
                    g.nodes[ntype].data[feat_name].shape[1], embed_size
                )
                nn.init.xavier_uniform_(self.node_projs[ntype].weight)
                print("node {} has data {}".format(ntype, feat_name))
        if sparse_emb:
            if dgl_sparse_emb:
                self.node_embeds = {}
                for ntype in g.ntypes:
                    # We only create embeddings for nodes without node features.
                    if feat_name not in g.nodes[ntype].data:
                        part_policy = g.get_node_partition_policy(ntype)
                        self.node_embeds[ntype] = dgl.distributed.DistEmbedding(
                            g.num_nodes(ntype),
                            self.embed_size,
                            embed_name + "_" + ntype,
                            init_emb,
                            part_policy,
                        )
            else:
                self.node_embeds = nn.ModuleDict()
                for ntype in g.ntypes:
                    # We only create embeddings for nodes without node features.
                    if feat_name not in g.nodes[ntype].data:
                        self.node_embeds[ntype] = th.nn.Embedding(
                            g.num_nodes(ntype),
                            self.embed_size,
                            sparse=self.sparse_emb,
                        )
                        nn.init.uniform_(
                            self.node_embeds[ntype].weight, -1.0, 1.0
                        )
        else:
            self.node_embeds = nn.ModuleDict()
            for ntype in g.ntypes:
                # We only create embeddings for nodes without node features.
                if feat_name not in g.nodes[ntype].data:
                    self.node_embeds[ntype] = th.nn.Embedding(
                        g.num_nodes(ntype), self.embed_size
                    )
                    nn.init.uniform_(self.node_embeds[ntype].weight, -1.0, 1.0)

    def forward(self, node_ids):
        """Forward computation
        Parameters
        ----------
        node_ids : dict of Tensor
            node ids to generate embedding for.
        Returns
        -------
        tensor
            embeddings as the input of the next layer
        """
        embeds = {}
        for ntype in node_ids:
            if self.feat_name in self.g.nodes[ntype].data:
                embeds[ntype] = self.node_projs[ntype](
                    self.g.nodes[ntype]
                    .data[self.feat_name][node_ids[ntype]]
                    .to(self.dev_id)
                )
            else:
                embeds[ntype] = self.node_embeds[ntype](node_ids[ntype]).to(
                    self.dev_id
                )
        return embeds


def compute_acc(results, labels):
    """
    Compute the accuracy of prediction given the labels.
    """
    labels = labels.long()
    return (results == labels).float().sum() / len(results)


def evaluate(
    g,
    model,
    embed_layer,
    labels,
    eval_loader,
    test_loader,
    all_val_nid,
    all_test_nid,
):
    model.eval()
    embed_layer.eval()
    eval_logits = []
    eval_seeds = []

    global_results = dgl.distributed.DistTensor(
        labels.shape, th.long, "results", persistent=True
    )

    with th.no_grad():
        th.cuda.empty_cache()
        for sample_data in tqdm.tqdm(eval_loader):
            input_nodes, seeds, blocks = sample_data
            seeds = seeds["paper"]
            feats = embed_layer(input_nodes)
            logits = model(blocks, feats)
            assert len(logits) == 1
            logits = logits["paper"]
            eval_logits.append(logits.cpu().detach())
            assert np.all(seeds.numpy() < g.num_nodes("paper"))
            eval_seeds.append(seeds.cpu().detach())
    eval_logits = th.cat(eval_logits)
    eval_seeds = th.cat(eval_seeds)
    global_results[eval_seeds] = eval_logits.argmax(dim=1)

    test_logits = []
    test_seeds = []
    with th.no_grad():
        th.cuda.empty_cache()
        for sample_data in tqdm.tqdm(test_loader):
            input_nodes, seeds, blocks = sample_data
            seeds = seeds["paper"]
            feats = embed_layer(input_nodes)
            logits = model(blocks, feats)
            assert len(logits) == 1
            logits = logits["paper"]
            test_logits.append(logits.cpu().detach())
            assert np.all(seeds.numpy() < g.num_nodes("paper"))
            test_seeds.append(seeds.cpu().detach())
    test_logits = th.cat(test_logits)
    test_seeds = th.cat(test_seeds)
    global_results[test_seeds] = test_logits.argmax(dim=1)

    g.barrier()
    if g.rank() == 0:
        return compute_acc(
            global_results[all_val_nid], labels[all_val_nid]
        ), compute_acc(global_results[all_test_nid], labels[all_test_nid])
    else:
        return -1, -1


def run(args, device, data):
    (
        g,
        num_classes,
        train_nid,
        val_nid,
        test_nid,
        labels,
        all_val_nid,
        all_test_nid,
    ) = data

    fanouts = [int(fanout) for fanout in args.fanout.split(",")]
    val_fanouts = [int(fanout) for fanout in args.validation_fanout.split(",")]

    sampler = dgl.dataloading.MultiLayerNeighborSampler(fanouts)
    dataloader = dgl.dataloading.DistNodeDataLoader(
        g,
        {"paper": train_nid},
        sampler,
        batch_size=args.batch_size,
        shuffle=True,
        drop_last=False,
    )

    valid_sampler = dgl.dataloading.MultiLayerNeighborSampler(val_fanouts)
    valid_dataloader = dgl.dataloading.DistNodeDataLoader(
        g,
        {"paper": val_nid},
        valid_sampler,
        batch_size=args.batch_size,
        shuffle=False,
        drop_last=False,
    )

    test_sampler = dgl.dataloading.MultiLayerNeighborSampler(val_fanouts)
    test_dataloader = dgl.dataloading.DistNodeDataLoader(
        g,
        {"paper": test_nid},
        test_sampler,
        batch_size=args.eval_batch_size,
        shuffle=False,
        drop_last=False,
    )

    embed_layer = DistEmbedLayer(
        device,
        g,
        args.n_hidden,
        sparse_emb=args.sparse_embedding,
        dgl_sparse_emb=args.dgl_sparse,
        feat_name="feat",
    )

    model = EntityClassify(
        device,
        args.n_hidden,
        num_classes,
        g.etypes,
        num_bases=args.n_bases,
        num_hidden_layers=args.n_layers - 2,
        dropout=args.dropout,
        use_self_loop=args.use_self_loop,
        layer_norm=args.layer_norm,
    )
    model = model.to(device)

    if not args.standalone:
        if args.num_gpus == -1:
            model = DistributedDataParallel(model)
            # If there are dense parameters in the embedding layer
            # or we use Pytorch saprse embeddings.
            if len(embed_layer.node_projs) > 0 or not args.dgl_sparse:
                embed_layer = DistributedDataParallel(embed_layer)
        else:
            dev_id = g.rank() % args.num_gpus
            model = DistributedDataParallel(
                model, device_ids=[dev_id], output_device=dev_id
            )
            # If there are dense parameters in the embedding layer
            # or we use Pytorch saprse embeddings.
            if len(embed_layer.node_projs) > 0 or not args.dgl_sparse:
                embed_layer = embed_layer.to(device)
                embed_layer = DistributedDataParallel(
                    embed_layer, device_ids=[dev_id], output_device=dev_id
                )

    if args.sparse_embedding:
        if args.dgl_sparse and args.standalone:
            emb_optimizer = dgl.distributed.optim.SparseAdam(
                list(embed_layer.node_embeds.values()), lr=args.sparse_lr
            )
            print(
                "optimize DGL sparse embedding:", embed_layer.node_embeds.keys()
            )
        elif args.dgl_sparse:
            emb_optimizer = dgl.distributed.optim.SparseAdam(
                list(embed_layer.module.node_embeds.values()), lr=args.sparse_lr
            )
            print(
                "optimize DGL sparse embedding:",
                embed_layer.module.node_embeds.keys(),
            )
        elif args.standalone:
            emb_optimizer = th.optim.SparseAdam(
                list(embed_layer.node_embeds.parameters()), lr=args.sparse_lr
            )
            print("optimize Pytorch sparse embedding:", embed_layer.node_embeds)
        else:
            emb_optimizer = th.optim.SparseAdam(
                list(embed_layer.module.node_embeds.parameters()),
                lr=args.sparse_lr,
            )
            print(
                "optimize Pytorch sparse embedding:",
                embed_layer.module.node_embeds,
            )

        dense_params = list(model.parameters())
        if args.standalone:
            dense_params += list(embed_layer.node_projs.parameters())
            print("optimize dense projection:", embed_layer.node_projs)
        else:
            dense_params += list(embed_layer.module.node_projs.parameters())
            print("optimize dense projection:", embed_layer.module.node_projs)
        optimizer = th.optim.Adam(
            dense_params, lr=args.lr, weight_decay=args.l2norm
        )
    else:
        all_params = list(model.parameters()) + list(embed_layer.parameters())
        optimizer = th.optim.Adam(
            all_params, lr=args.lr, weight_decay=args.l2norm
        )

    # training loop
    print("start training...")
    for epoch in range(args.n_epochs):
        tic = time.time()

        sample_time = 0
        copy_time = 0
        forward_time = 0
        backward_time = 0
        update_time = 0
        number_train = 0
        number_input = 0

        step_time = []
        iter_t = []
        sample_t = []
        feat_copy_t = []
        forward_t = []
        backward_t = []
        update_t = []
        iter_tput = []

        start = time.time()
        # Loop over the dataloader to sample the computation dependency graph as a list of
        # blocks.
        step_time = []
        for step, sample_data in enumerate(dataloader):
            input_nodes, seeds, blocks = sample_data
            seeds = seeds["paper"]
            number_train += seeds.shape[0]
            number_input += np.sum(
                [blocks[0].num_src_nodes(ntype) for ntype in blocks[0].ntypes]
            )
            tic_step = time.time()
            sample_time += tic_step - start
            sample_t.append(tic_step - start)

            feats = embed_layer(input_nodes)
            label = labels[seeds].to(device)
            copy_time = time.time()
            feat_copy_t.append(copy_time - tic_step)

            # forward
            logits = model(blocks, feats)
            assert len(logits) == 1
            logits = logits["paper"]
            loss = F.cross_entropy(logits, label)
            forward_end = time.time()

            # backward
            optimizer.zero_grad()
            if args.sparse_embedding:
                emb_optimizer.zero_grad()
            loss.backward()
            compute_end = time.time()
            forward_t.append(forward_end - copy_time)
            backward_t.append(compute_end - forward_end)

            # Update model parameters
            optimizer.step()
            if args.sparse_embedding:
                emb_optimizer.step()
            update_t.append(time.time() - compute_end)
            step_t = time.time() - start
            step_time.append(step_t)

            train_acc = th.sum(logits.argmax(dim=1) == label).item() / len(
                seeds
            )

            if step % args.log_every == 0:
                print(
                    "[{}] Epoch {:05d} | Step {:05d} | Train acc {:.4f} | Loss {:.4f} | time {:.3f} s"
                    "| sample {:.3f} | copy {:.3f} | forward {:.3f} | backward {:.3f} | update {:.3f}".format(
                        g.rank(),
                        epoch,
                        step,
                        train_acc,
                        loss.item(),
                        np.sum(step_time[-args.log_every :]),
                        np.sum(sample_t[-args.log_every :]),
                        np.sum(feat_copy_t[-args.log_every :]),
                        np.sum(forward_t[-args.log_every :]),
                        np.sum(backward_t[-args.log_every :]),
                        np.sum(update_t[-args.log_every :]),
                    )
                )
            start = time.time()

        gc.collect()
        print(
            "[{}]Epoch Time(s): {:.4f}, sample: {:.4f}, data copy: {:.4f}, forward: {:.4f}, backward: {:.4f}, update: {:.4f}, #train: {}, #input: {}".format(
                g.rank(),
                np.sum(step_time),
                np.sum(sample_t),
                np.sum(feat_copy_t),
                np.sum(forward_t),
                np.sum(backward_t),
                np.sum(update_t),
                number_train,
                number_input,
            )
        )
        epoch += 1

        start = time.time()
        g.barrier()
        val_acc, test_acc = evaluate(
            g,
            model,
            embed_layer,
            labels,
            valid_dataloader,
            test_dataloader,
            all_val_nid,
            all_test_nid,
        )
        if val_acc >= 0:
            print(
                "Val Acc {:.4f}, Test Acc {:.4f}, time: {:.4f}".format(
                    val_acc, test_acc, time.time() - start
                )
            )


def main(args):
    dgl.distributed.initialize(args.ip_config, use_graphbolt=args.use_graphbolt)
    if not args.standalone:
        backend = "gloo" if args.num_gpus == -1 else "nccl"
        th.distributed.init_process_group(backend=backend)

    g = dgl.distributed.DistGraph(args.graph_name, part_config=args.conf_path)
    print("rank:", g.rank())

    pb = g.get_partition_book()
    if "trainer_id" in g.nodes["paper"].data:
        train_nid = dgl.distributed.node_split(
            g.nodes["paper"].data["train_mask"],
            pb,
            ntype="paper",
            force_even=True,
            node_trainer_ids=g.nodes["paper"].data["trainer_id"],
        )
        val_nid = dgl.distributed.node_split(
            g.nodes["paper"].data["val_mask"],
            pb,
            ntype="paper",
            force_even=True,
            node_trainer_ids=g.nodes["paper"].data["trainer_id"],
        )
        test_nid = dgl.distributed.node_split(
            g.nodes["paper"].data["test_mask"],
            pb,
            ntype="paper",
            force_even=True,
            node_trainer_ids=g.nodes["paper"].data["trainer_id"],
        )
    else:
        train_nid = dgl.distributed.node_split(
            g.nodes["paper"].data["train_mask"],
            pb,
            ntype="paper",
            force_even=True,
        )
        val_nid = dgl.distributed.node_split(
            g.nodes["paper"].data["val_mask"],
            pb,
            ntype="paper",
            force_even=True,
        )
        test_nid = dgl.distributed.node_split(
            g.nodes["paper"].data["test_mask"],
            pb,
            ntype="paper",
            force_even=True,
        )
    local_nid = pb.partid2nids(pb.partid, "paper").detach().numpy()
    print(
        "part {}, train: {} (local: {}), val: {} (local: {}), test: {} (local: {})".format(
            g.rank(),
            len(train_nid),
            len(np.intersect1d(train_nid.numpy(), local_nid)),
            len(val_nid),
            len(np.intersect1d(val_nid.numpy(), local_nid)),
            len(test_nid),
            len(np.intersect1d(test_nid.numpy(), local_nid)),
        )
    )
    if args.num_gpus == -1:
        device = th.device("cpu")
    else:
        dev_id = g.rank() % args.num_gpus
        device = th.device("cuda:" + str(dev_id))
    labels = g.nodes["paper"].data["labels"][np.arange(g.num_nodes("paper"))]
    all_val_nid = th.LongTensor(
        np.nonzero(
            g.nodes["paper"].data["val_mask"][np.arange(g.num_nodes("paper"))]
        )
    ).squeeze()
    all_test_nid = th.LongTensor(
        np.nonzero(
            g.nodes["paper"].data["test_mask"][np.arange(g.num_nodes("paper"))]
        )
    ).squeeze()
    n_classes = len(th.unique(labels[labels >= 0]))
    print("#classes:", n_classes)

    run(
        args,
        device,
        (
            g,
            n_classes,
            train_nid,
            val_nid,
            test_nid,
            labels,
            all_val_nid,
            all_test_nid,
        ),
    )


if __name__ == "__main__":
    parser = argparse.ArgumentParser(description="RGCN")
    # distributed training related
    parser.add_argument("--graph-name", type=str, help="graph name")
    parser.add_argument("--id", type=int, help="the partition id")
    parser.add_argument(
        "--ip-config", type=str, help="The file for IP configuration"
    )
    parser.add_argument(
        "--conf-path", type=str, help="The path to the partition config file"
    )

    # rgcn related
    parser.add_argument(
        "--num_gpus",
        type=int,
        default=-1,
        help="the number of GPU device. Use -1 for CPU training",
    )
    parser.add_argument(
        "--dropout", type=float, default=0, help="dropout probability"
    )
    parser.add_argument(
        "--n-hidden", type=int, default=16, help="number of hidden units"
    )
    parser.add_argument("--lr", type=float, default=1e-2, help="learning rate")
    parser.add_argument(
        "--sparse-lr", type=float, default=1e-2, help="sparse lr rate"
    )
    parser.add_argument(
        "--n-bases",
        type=int,
        default=-1,
        help="number of filter weight matrices, default: -1 [use all]",
    )
    parser.add_argument(
        "--n-layers", type=int, default=2, help="number of propagation rounds"
    )
    parser.add_argument(
        "-e",
        "--n-epochs",
        type=int,
        default=50,
        help="number of training epochs",
    )
    parser.add_argument(
        "-d", "--dataset", type=str, required=True, help="dataset to use"
    )
    parser.add_argument("--l2norm", type=float, default=0, help="l2 norm coef")
    parser.add_argument(
        "--relabel",
        default=False,
        action="store_true",
        help="remove untouched nodes and relabel",
    )
    parser.add_argument(
        "--fanout",
        type=str,
        default="4, 4",
        help="Fan-out of neighbor sampling.",
    )
    parser.add_argument(
        "--validation-fanout",
        type=str,
        default=None,
        help="Fan-out of neighbor sampling during validation.",
    )
    parser.add_argument(
        "--use-self-loop",
        default=False,
        action="store_true",
        help="include self feature as a special relation",
    )
    parser.add_argument(
        "--batch-size", type=int, default=100, help="Mini-batch size. "
    )
    parser.add_argument(
        "--eval-batch-size", type=int, default=128, help="Mini-batch size. "
    )
    parser.add_argument("--log-every", type=int, default=20)
    parser.add_argument(
        "--low-mem",
        default=False,
        action="store_true",
        help="Whether use low mem RelGraphCov",
    )
    parser.add_argument(
        "--sparse-embedding",
        action="store_true",
        help="Use sparse embedding for node embeddings.",
    )
    parser.add_argument(
        "--dgl-sparse",
        action="store_true",
        help="Whether to use DGL sparse embedding",
    )
    parser.add_argument(
        "--layer-norm",
        default=False,
        action="store_true",
        help="Use layer norm",
    )
    parser.add_argument(
        "--local_rank", type=int, help="get rank of the process"
    )
    parser.add_argument(
        "--standalone", action="store_true", help="run in the standalone mode"
    )
    parser.add_argument(
        "--use_graphbolt",
        action="store_true",
        help="Use GraphBolt for distributed train.",
    )
    args = parser.parse_args()

    # if validation_fanout is None, set it with args.fanout
    if args.validation_fanout is None:
        args.validation_fanout = args.fanout
    print(args)
    main(args)