test_optim.py 18.1 KB
Newer Older
1
import os
2
import time
3
import unittest
4

5
import backend as F
6
7
8
import pytest
import torch as th
import torch.multiprocessing as mp
9
10

from dgl.nn import NodeEmbedding
11
12
from dgl.optim import SparseAdagrad, SparseAdam

13

14
15
@unittest.skipIf(os.name == "nt", reason="Do not support windows yet")
@pytest.mark.parametrize("emb_dim", [1, 4, 101, 1024])
16
def test_sparse_adam(emb_dim):
17
    num_embs = 10
18
19
    device = F.ctx()
    dgl_emb = NodeEmbedding(num_embs, emb_dim, "test")
20
21
22
23
    torch_emb = th.nn.Embedding(num_embs, emb_dim, sparse=True)
    th.manual_seed(0)
    th.nn.init.uniform_(torch_emb.weight, 0, 1.0)
    th.manual_seed(0)
24
    th.nn.init.uniform_(dgl_emb.weight, 0, 1.0)
25
26
27
28
29
30

    dgl_adam = SparseAdam(params=[dgl_emb], lr=0.01)
    torch_adam = th.optim.SparseAdam(list(torch_emb.parameters()), lr=0.01)

    # first step
    idx = th.randint(0, num_embs, size=(4,))
31
    dgl_value = dgl_emb(idx, device).to(th.device("cpu"))
32
    torch_value = torch_emb(idx)
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
    labels = th.zeros((4,)).long()
    print("dgl_value = {}".format(dgl_value))
    print("labels = {}".format(labels))

    dgl_adam.zero_grad()
    torch_adam.zero_grad()
    dgl_loss = th.nn.functional.cross_entropy(dgl_value, labels)
    torch_loss = th.nn.functional.cross_entropy(torch_value, labels)
    dgl_loss.backward()
    torch_loss.backward()

    dgl_adam.step()
    torch_adam.step()
    assert F.allclose(dgl_emb.weight, torch_emb.weight)

    # Can not test second step
    # Pytorch sparseAdam maintains a global step
    # DGL sparseAdam use a per embedding step

52
53
54
55

@unittest.skipIf(os.name == "nt", reason="Do not support windows yet")
@pytest.mark.parametrize("use_uva", [False, True, None])
@pytest.mark.parametrize("emb_dim", [1, 4, 101, 1024])
56
def test_sparse_adam_uva(use_uva, emb_dim):
57
    if F.ctx().type == "cpu" and use_uva == True:
58
59
60
61
        # we want to only test values of False and None when not using GPU
        pytest.skip("UVA cannot be used without GPUs.")

    num_embs = 10
62
63
    device = F.ctx()
    dgl_emb = NodeEmbedding(num_embs, emb_dim, "test_uva{}".format(use_uva))
64
65
66
67
68
69
70
71
72
73
74
    torch_emb = th.nn.Embedding(num_embs, emb_dim, sparse=True)
    th.manual_seed(0)
    th.nn.init.uniform_(torch_emb.weight, 0, 1.0)
    th.manual_seed(0)
    th.nn.init.uniform_(dgl_emb.weight, 0, 1.0)

    dgl_adam = SparseAdam(params=[dgl_emb], lr=0.01, use_uva=use_uva)
    torch_adam = th.optim.SparseAdam(list(torch_emb.parameters()), lr=0.01)

    # first step
    idx = th.randint(0, num_embs, size=(4,))
75
    dgl_value = dgl_emb(idx, device).to(th.device("cpu"))
76
77
    torch_value = torch_emb(idx)
    labels = th.zeros((4,)).long()
78
79
80
81
82
83
84
85
86
87

    dgl_adam.zero_grad()
    torch_adam.zero_grad()
    dgl_loss = th.nn.functional.cross_entropy(dgl_value, labels)
    torch_loss = th.nn.functional.cross_entropy(torch_value, labels)
    dgl_loss.backward()
    torch_loss.backward()

    dgl_adam.step()
    torch_adam.step()
88
    assert F.allclose(dgl_emb.weight, torch_emb.weight)
89
90
91
92
93

    # Can not test second step
    # Pytorch sparseAdam maintains a global step
    # DGL sparseAdam use a per embedding step

94
95
96
97

@unittest.skipIf(os.name == "nt", reason="Do not support windows yet")
@pytest.mark.parametrize("dtype", [th.float32, th.float16])
@pytest.mark.parametrize("emb_dim", [1, 4, 101, 1024])
98
99
def test_sparse_adam_dtype(dtype, emb_dim):
    num_embs = 10
100
101
    device = F.ctx()
    dgl_emb = NodeEmbedding(num_embs, emb_dim, "test_dtype{}".format(dtype))
102
103
104
105
106
107
108
109
110
111
112
    torch_emb = th.nn.Embedding(num_embs, emb_dim, sparse=True)
    th.manual_seed(0)
    th.nn.init.uniform_(torch_emb.weight, 0, 1.0)
    th.manual_seed(0)
    th.nn.init.uniform_(dgl_emb.weight, 0, 1.0)

    dgl_adam = SparseAdam(params=[dgl_emb], lr=0.01, dtype=dtype)
    torch_adam = th.optim.SparseAdam(list(torch_emb.parameters()), lr=0.01)

    # first step
    idx = th.randint(0, num_embs, size=(4,))
113
    dgl_value = dgl_emb(idx, device).to(th.device("cpu"))
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
    torch_value = torch_emb(idx)
    labels = th.zeros((4,)).long()

    dgl_adam.zero_grad()
    torch_adam.zero_grad()
    dgl_loss = th.nn.functional.cross_entropy(dgl_value, labels)
    torch_loss = th.nn.functional.cross_entropy(torch_value, labels)
    dgl_loss.backward()
    torch_loss.backward()

    dgl_adam.step()
    torch_adam.step()
    assert F.allclose(dgl_emb.weight, torch_emb.weight)

    # Can not test second step
    # Pytorch sparseAdam maintains a global step
    # DGL sparseAdam use a per embedding step


133
@unittest.skipIf(os.name == "nt", reason="Do not support windows yet")
134
135
136
def test_sparse_adam_zero_step():
    num_embs = 10
    emb_dim = 4
137
138
    device = F.ctx()
    dgl_emb = NodeEmbedding(num_embs, emb_dim, "test")
139
    torch_emb = th.nn.Embedding(num_embs, emb_dim, sparse=True)
140
    dgl_emb_zero = NodeEmbedding(num_embs, emb_dim, "test2")
141
142
143
144
145
146
147
148
149
150
    torch_emb_zero = th.nn.Embedding(num_embs, emb_dim, sparse=True)
    th.manual_seed(0)
    th.nn.init.uniform_(torch_emb.weight, 0, 1.0)
    th.nn.init.uniform_(torch_emb_zero.weight, 0, 1.0)
    th.manual_seed(0)
    th.nn.init.uniform_(dgl_emb.weight, 0, 1.0)
    th.nn.init.uniform_(dgl_emb_zero.weight, 0, 1.0)

    dgl_adam = SparseAdam(params=[dgl_emb, dgl_emb_zero], lr=0.01)
    torch_adam = th.optim.SparseAdam(
151
152
153
        list(torch_emb.parameters()) + list(torch_emb_zero.parameters()),
        lr=0.01,
    )
154
155
156

    # first step
    idx = th.randint(0, num_embs, size=(4,))
157
    dgl_value = dgl_emb(idx, device).to(th.device("cpu"))
158
159
160
161
162
163
164
165
166
167
168
169
170
171
    torch_value = torch_emb(idx)
    labels = th.ones((4,)).long()

    dgl_adam.zero_grad()
    torch_adam.zero_grad()
    dgl_loss = th.nn.functional.cross_entropy(dgl_value, labels)
    torch_loss = th.nn.functional.cross_entropy(torch_value, labels)
    dgl_loss.backward()
    torch_loss.backward()

    dgl_adam.step()
    torch_adam.step()
    assert F.allclose(dgl_emb.weight, torch_emb.weight)

172

173
174
175
176
177
def initializer(emb):
    th.manual_seed(0)
    emb.uniform_(-1.0, 1.0)
    return emb

178

179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
def start_sparse_adam_worker(
    rank,
    device,
    world_size,
    weight,
    tensor_dev="cpu",
    has_zero_grad=False,
    backend="gloo",
    num_embs=128,
    emb_dim=10,
):
    print("start sparse worker for adam {}".format(rank))
    dist_init_method = "tcp://{master_ip}:{master_port}".format(
        master_ip="127.0.0.1", master_port="12345"
    )

    if device.type == "cuda":
196
197
        th.cuda.set_device(device)

198
199
200
201
202
203
    th.distributed.init_process_group(
        backend=backend,
        init_method=dist_init_method,
        world_size=world_size,
        rank=rank,
    )
204
205
206
207

    init_weight = th.empty((num_embs, emb_dim))
    th.manual_seed(0)
    th.nn.init.uniform_(init_weight, -1.0, 1.0)
208
209
210
    dgl_emb = NodeEmbedding(
        num_embs, emb_dim, "test", init_func=initializer, device=tensor_dev
    )
211
212
213
    dgl_emb.all_set_embedding(init_weight)

    if has_zero_grad:
214
215
216
        dgl_emb_zero = NodeEmbedding(
            num_embs, emb_dim, "zero", init_func=initializer, device=tensor_dev
        )
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
        dgl_adam = SparseAdam(params=[dgl_emb, dgl_emb_zero], lr=0.01)
    else:
        dgl_adam = SparseAdam(params=[dgl_emb], lr=0.01)

    start = (num_embs // world_size) * rank
    end = (num_embs // world_size) * (rank + 1)
    th.manual_seed(rank)
    idx = th.randint(start, end, size=(4,)).to(tensor_dev)
    dgl_value = dgl_emb(idx, device)
    labels = th.ones((4,)).long().to(device)
    dgl_loss = th.nn.functional.cross_entropy(dgl_value, labels)
    dgl_adam.zero_grad()
    dgl_loss.backward()
    dgl_adam.step()
    th.distributed.barrier()
    dgl_weight = dgl_emb.all_get_embedding().detach()
    after_step = dgl_emb(idx, device).cpu()

    if rank == 0:
        dgl_value = dgl_value.detach().cpu()
        assert F.allclose(dgl_value, after_step) is False
        weight[:] = dgl_weight[:]
    th.distributed.barrier()

241

242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
def start_torch_adam_worker(
    rank, world_size, weight, has_zero_grad=False, num_embs=128, emb_dim=10
):
    print("start sparse worker for adam {}".format(rank))
    dist_init_method = "tcp://{master_ip}:{master_port}".format(
        master_ip="127.0.0.1", master_port="12345"
    )
    backend = "gloo"

    th.distributed.init_process_group(
        backend=backend,
        init_method=dist_init_method,
        world_size=world_size,
        rank=rank,
    )
257
258
259
260
261
262
263

    torch_emb = th.nn.Embedding(num_embs, emb_dim, sparse=True)
    th.manual_seed(0)
    th.nn.init.uniform_(torch_emb.weight, -1.0, 1.0)
    torch_emb = th.nn.parallel.DistributedDataParallel(torch_emb)
    if has_zero_grad:
        torch_emb_zero = th.nn.Embedding(num_embs, emb_dim, sparse=True)
264
        torch_emb_zero = torch_emb_zero.to(tensor_dev)
265
266
267
268
        th.manual_seed(0)
        th.nn.init.uniform_(torch_emb_zero.weight, -1.0, 1.0)
        torch_emb_zero = th.nn.parallel.DistributedDataParallel(torch_emb_zero)
        torch_adam = th.optim.SparseAdam(
269
270
271
272
            list(torch_emb.module.parameters())
            + list(torch_emb_zero.module.parameters()),
            lr=0.01,
        )
273
    else:
274
275
276
        torch_adam = th.optim.SparseAdam(
            list(torch_emb.module.parameters()), lr=0.01
        )
277
278
279

    start = (num_embs // world_size) * rank
    end = (num_embs // world_size) * (rank + 1)
280
    th.manual_seed(rank)
281
282
    idx = th.randint(start, end, size=(4,))
    labels = th.ones((4,)).long()
283
    torch_value = torch_emb(idx)
284
285
286
287
    torch_loss = th.nn.functional.cross_entropy(torch_value, labels)
    torch_adam.zero_grad()
    torch_loss.backward()
    torch_adam.step()
288
289
    th.distributed.barrier()

290
    if rank == 0:
291
        weight[:] = torch_emb.module.weight.cpu()[:]
292
293
    th.distributed.barrier()

294
295
296

@unittest.skipIf(os.name == "nt", reason="Do not support windows yet")
@unittest.skipIf(F.ctx().type != "cpu", reason="cpu only test")
297
298
@pytest.mark.parametrize("num_workers", [2, 4])
def test_multiprocess_cpu_sparse_adam(num_workers):
299
    backend = "gloo"
300
    worker_list = []
301
302
    num_embs = 128
    emb_dim = 10
303
    dgl_weight = th.empty((num_embs, emb_dim))
304
    ctx = mp.get_context("spawn")
305
306
    for i in range(num_workers):
        device = F.ctx()
307
308
309
310
311
312
313
314
315
316
317
318
        p = ctx.Process(
            target=start_sparse_adam_worker,
            args=(
                i,
                device,
                num_workers,
                dgl_weight,
                th.device("cpu"),
                True,
                backend,
            ),
        )
319
320
321
322
323
324
325
326
        p.start()
        worker_list.append(p)
    for p in worker_list:
        p.join()

    worker_list = []
    torch_weight = th.empty((num_embs, emb_dim))
    for i in range(num_workers):
327
328
329
330
        p = ctx.Process(
            target=start_torch_adam_worker,
            args=(i, num_workers, torch_weight, False),
        )
331
332
333
334
335
336
337
        p.start()
        worker_list.append(p)
    for p in worker_list:
        p.join()

    assert F.allclose(dgl_weight, torch_weight)

338
339
340

@unittest.skipIf(os.name == "nt", reason="Do not support windows yet")
@unittest.skipIf(F.ctx().type == "cpu", reason="gpu only test")
341
@pytest.mark.parametrize("num_workers", [2, 4, 8])
342
@pytest.mark.parametrize("backend", ["nccl", "gloo"])
343
def test_multiprocess_sparse_adam(num_workers, backend):
344
    if F.ctx().type == "cuda" and th.cuda.device_count() < num_workers:
345
346
        pytest.skip("Not enough GPUs to run test.")

347
    worker_list = []
348
349
    num_embs = 128
    emb_dim = 10
350
    dgl_weight = th.empty((num_embs, emb_dim))
351
    ctx = mp.get_context("spawn")
352
353
    for i in range(num_workers):
        device = F.ctx()
354
        if device.type == "cuda":
355
356
            # make sure each process has a unique GPU
            device = th.device(i)
357
358
359
360
361
362
363
364
365
366
367
368
        p = ctx.Process(
            target=start_sparse_adam_worker,
            args=(
                i,
                device,
                num_workers,
                dgl_weight,
                th.device("cpu"),
                True,
                backend,
            ),
        )
369
370
371
372
        p.start()
        worker_list.append(p)
    for p in worker_list:
        p.join()
373

374
375
376
    worker_list = []
    torch_weight = th.empty((num_embs, emb_dim))
    for i in range(num_workers):
377
378
379
380
        p = ctx.Process(
            target=start_torch_adam_worker,
            args=(i, num_workers, torch_weight, False),
        )
381
382
383
384
385
386
387
        p.start()
        worker_list.append(p)
    for p in worker_list:
        p.join()

    assert F.allclose(dgl_weight, torch_weight)

388
389
390
391
392

@unittest.skipIf(os.name == "nt", reason="Do not support windows yet")
@unittest.skipIf(
    F.ctx().type == "cpu", reason="cuda tensor is not supported for cpu"
)
393
394
@pytest.mark.parametrize("num_workers", [2, 4, 8])
def test_multiprocess_sparse_adam_cuda_tensor(num_workers):
395
    if F.ctx().type == "cpu":
396
        pytest.skip("Do not test CPU")
397
    if F.ctx().type == "cuda" and th.cuda.device_count() < num_workers:
398
399
        pytest.skip("Not enough GPUs to run test.")

400
    backend = "nccl"
401
    worker_list = []
402
403
    num_embs = 128
    emb_dim = 10
404
    dgl_weight = th.empty((num_embs, emb_dim))
405
    ctx = mp.get_context("spawn")
406
    for i in range(num_workers):
407
        device = th.device(i)
408
409
410
411
        p = ctx.Process(
            target=start_sparse_adam_worker,
            args=(i, device, num_workers, dgl_weight, device, False, backend),
        )
412
413
        p.start()
        worker_list.append(p)
414
415
    for p in worker_list:
        p.join()
416

417
418
419
    worker_list = []
    torch_weight = th.empty((num_embs, emb_dim))
    for i in range(num_workers):
420
421
422
423
        p = ctx.Process(
            target=start_torch_adam_worker,
            args=(i, num_workers, torch_weight, False),
        )
424
425
        p.start()
        worker_list.append(p)
426
427
428
    for p in worker_list:
        p.join()

429
430
    assert F.allclose(dgl_weight, torch_weight)

431
432
433

@unittest.skipIf(os.name == "nt", reason="Do not support windows yet")
@unittest.skipIf(F.ctx().type != "cpu", reason="cpu only test")
434
435
@pytest.mark.parametrize("num_workers", [2, 4])
def test_multiprocess_sparse_adam_cpu_zero_step(num_workers):
436
    backend = "gloo"
437
438

    worker_list = []
439
440
    num_embs = 128
    emb_dim = 10
441
    dgl_weight = th.empty((num_embs, emb_dim))
442
    ctx = mp.get_context("spawn")
443
444
    for i in range(num_workers):
        device = F.ctx()
445
446
447
448
449
450
451
452
453
454
455
456
        p = ctx.Process(
            target=start_sparse_adam_worker,
            args=(
                i,
                device,
                num_workers,
                dgl_weight,
                th.device("cpu"),
                True,
                backend,
            ),
        )
457
458
459
460
461
462
463
464
        p.start()
        worker_list.append(p)
    for p in worker_list:
        p.join()

    worker_list = []
    torch_weight = th.empty((num_embs, emb_dim))
    for i in range(num_workers):
465
466
467
468
        p = ctx.Process(
            target=start_torch_adam_worker,
            args=(i, num_workers, torch_weight, False),
        )
469
470
471
472
473
474
475
        p.start()
        worker_list.append(p)
    for p in worker_list:
        p.join()

    assert F.allclose(dgl_weight, torch_weight)

476
477
478

@unittest.skipIf(os.name == "nt", reason="Do not support windows yet")
@unittest.skipIf(F.ctx().type == "cpu", reason="gpu only test")
479
@pytest.mark.parametrize("num_workers", [2, 4, 8])
480
@pytest.mark.parametrize("backend", ["nccl", "gloo"])
481
def test_multiprocess_sparse_adam_zero_step(num_workers, backend):
482
    if F.ctx().type == "cuda" and th.cuda.device_count() < num_workers:
483
484
        pytest.skip("Not enough GPUs to run test.")

485
    worker_list = []
486
487
    num_embs = 128
    emb_dim = 10
488
    dgl_weight = th.empty((num_embs, emb_dim))
489
    ctx = mp.get_context("spawn")
490
491
    for i in range(num_workers):
        device = F.ctx()
492
        if device.type == "cuda":
493
494
            # make sure each process has a unique GPU
            device = th.device(i)
495
496
497
498
499
500
501
502
503
504
505
506
        p = ctx.Process(
            target=start_sparse_adam_worker,
            args=(
                i,
                device,
                num_workers,
                dgl_weight,
                th.device("cpu"),
                True,
                backend,
            ),
        )
507
508
509
510
        p.start()
        worker_list.append(p)
    for p in worker_list:
        p.join()
511

512
513
514
    worker_list = []
    torch_weight = th.empty((num_embs, emb_dim))
    for i in range(num_workers):
515
516
517
518
        p = ctx.Process(
            target=start_torch_adam_worker,
            args=(i, num_workers, torch_weight, False),
        )
519
520
521
522
523
524
525
        p.start()
        worker_list.append(p)
    for p in worker_list:
        p.join()

    assert F.allclose(dgl_weight, torch_weight)

526
527
528
529
530

@unittest.skipIf(os.name == "nt", reason="Do not support windows yet")
@unittest.skipIf(
    F.ctx().type == "cpu", reason="cuda tensor is not supported for cpu"
)
531
532
@pytest.mark.parametrize("num_workers", [2, 4, 8])
def test_multiprocess_sparse_adam_zero_step_cuda_tensor(num_workers):
533
    if F.ctx().type == "cuda" and th.cuda.device_count() < num_workers:
534
535
        pytest.skip("Not enough GPUs to run test.")

536
    backend = "nccl"
537
    worker_list = []
538
539
    num_embs = 128
    emb_dim = 10
540
    dgl_weight = th.empty((num_embs, emb_dim))
541
    ctx = mp.get_context("spawn")
542
    for i in range(num_workers):
543
        device = th.device(i)
544
545
546
547
        p = ctx.Process(
            target=start_sparse_adam_worker,
            args=(i, device, num_workers, dgl_weight, device, True, backend),
        )
548
549
        p.start()
        worker_list.append(p)
550
551
    for p in worker_list:
        p.join()
552

553
554
555
    worker_list = []
    torch_weight = th.empty((num_embs, emb_dim))
    for i in range(num_workers):
556
557
558
559
        p = ctx.Process(
            target=start_torch_adam_worker,
            args=(i, num_workers, torch_weight, False),
        )
560
561
        p.start()
        worker_list.append(p)
562
563
564
    for p in worker_list:
        p.join()

565
566
    assert F.allclose(dgl_weight, torch_weight)

567
568

if __name__ == "__main__":
569
570
571
572
    test_sparse_adam(1)
    test_sparse_adam(4)
    test_sparse_adam(101)
    test_sparse_adam(1024)
573
574
    test_sparse_adam_zero_step()

575
576
577
578
579
    test_multiprocess_cpu_sparse_adam(2)
    test_multiprocess_cpu_sparse_adam(4)
    test_multiprocess_cpu_sparse_adam(8)
    test_multiprocess_sparse_adam_cpu_zero_step(2)

580
581
582
583
584
585
    test_multiprocess_sparse_adam(2, backend="gloo")
    test_multiprocess_sparse_adam(4, backend="gloo")
    test_multiprocess_sparse_adam(8, backend="gloo")
    test_multiprocess_sparse_adam(2, backend="nccl")
    test_multiprocess_sparse_adam(4, backend="nccl")
    test_multiprocess_sparse_adam(8, backend="nccl")
586

587
588
    test_multiprocess_sparse_adam_zero_step(2, backend="gloo")
    test_multiprocess_sparse_adam_zero_step(4, backend="nccl")
589

590
591
    test_multiprocess_sparse_adam_cuda_tensor(2)
    test_multiprocess_sparse_adam_zero_step_cuda_tensor(4)