test_inplace_update.py 8.79 KB
Newer Older
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
import os
os.environ['DGLBACKEND'] = 'mxnet'
import mxnet as mx
import numpy as np
import scipy.sparse as sp
import dgl
import dgl.function as fn

D = 5

def generate_graph():
    g = dgl.DGLGraph()
    g.add_nodes(10)
    # create a graph where 0 is the source and 9 is the sink
    for i in range(1, 9):
        g.add_edge(0, i)
        g.add_edge(i, 9)
    # add a back flow from 9 to 0
    g.add_edge(9, 0)
    g.ndata['f'] = mx.nd.random.normal(shape=(10, D))
    g.edata['e'] = mx.nd.random.normal(shape=(17, D))
    return g

def test_inplace_recv():
    u = mx.nd.array([0, 0, 0, 3, 4, 9], dtype=np.int64)
    v = mx.nd.array([1, 2, 3, 9, 9, 0], dtype=np.int64)

    def message_func(edges):
        return {'m' : edges.src['f'] + edges.dst['f']}

    def reduce_func(nodes):
        return {'f' : mx.nd.sum(nodes.mailbox['m'], 1)}

    def apply_func(nodes):
        return {'f' : 2 * nodes.data['f']}

    def _test(apply_func):
        g = generate_graph()
        f = g.ndata['f']

        # one out place run to get result
        g.send((u, v), message_func)
        g.recv(mx.nd.array([0,1,2,3,9], dtype=np.int64),
               reduce_func, apply_func)
        result = g.get_n_repr()['f']

        # inplace deg bucket run
        v1 = f.copy()
        g.ndata['f'] = v1
        g.send((u, v), message_func)
        g.recv(mx.nd.array([0,1,2,3,9], dtype=np.int64),
               reduce_func, apply_func, inplace=True)
        r1 = g.get_n_repr()['f']
        # check result
        assert np.allclose(r1.asnumpy(), result.asnumpy())
        # check inplace
        assert np.allclose(v1.asnumpy(), r1.asnumpy())

        # inplace e2v
        v1 = f.copy()
        g.ndata['f'] = v1
        g.send((u, v), message_func)
        g.recv(mx.nd.array([0,1,2,3,9], dtype=np.int64),
               fn.sum(msg='m', out='f'), apply_func, inplace=True)
        r1 = g.ndata['f']
        # check result
        assert np.allclose(r1.asnumpy(), result.asnumpy())
        # check inplace
        assert np.allclose(v1.asnumpy(), r1.asnumpy())

    # test send_and_recv with apply_func
    _test(apply_func)
    # test send_and_recv without apply_func
    _test(None)

def test_inplace_snr():
    u = mx.nd.array([0, 0, 0, 3, 4, 9], dtype=np.int64)
    v = mx.nd.array([1, 2, 3, 9, 9, 0], dtype=np.int64)

    def message_func(edges):
        return {'m' : edges.src['f']}

    def reduce_func(nodes):
        return {'f' : mx.nd.sum(nodes.mailbox['m'], 1)}

    def apply_func(nodes):
        return {'f' : 2 * nodes.data['f']}

    def _test(apply_func):
        g = generate_graph()
        f = g.ndata['f']

        # an out place run to get result
        g.send_and_recv((u, v), fn.copy_src(src='f', out='m'),
                fn.sum(msg='m', out='f'), apply_func)
        result = g.ndata['f']

        # inplace deg bucket
        v1 = f.copy()
        g.ndata['f'] = v1
        g.send_and_recv((u, v), message_func, reduce_func, apply_func, inplace=True)
        r1 = g.ndata['f']
        # check result
        assert np.allclose(r1.asnumpy(), result.asnumpy())
        # check inplace
        assert np.allclose(v1.asnumpy(), r1.asnumpy())

        # inplace v2v spmv
        v1 = f.copy()
        g.ndata['f'] = v1
        g.send_and_recv((u, v), fn.copy_src(src='f', out='m'),
                        fn.sum(msg='m', out='f'), apply_func, inplace=True)
        r1 = g.ndata['f']
        # check result
        assert np.allclose(r1.asnumpy(), result.asnumpy())
        # check inplace
        assert np.allclose(v1.asnumpy(), r1.asnumpy())

        # inplace e2v spmv
        v1 = f.copy()
        g.ndata['f'] = v1
        g.send_and_recv((u, v), message_func,
                        fn.sum(msg='m', out='f'), apply_func, inplace=True)
        r1 = g.ndata['f']
        # check result
        assert np.allclose(r1.asnumpy(), result.asnumpy())
        # check inplace
        assert np.allclose(v1.asnumpy(), r1.asnumpy())

    # test send_and_recv with apply_func
    _test(apply_func)
    # test send_and_recv without apply_func
    _test(None)

def test_inplace_push():
    nodes = mx.nd.array([0, 3, 4, 9], dtype=np.int64)

    def message_func(edges):
        return {'m' : edges.src['f']}

    def reduce_func(nodes):
        return {'f' : mx.nd.sum(nodes.mailbox['m'], 1)}

    def apply_func(nodes):
        return {'f' : 2 * nodes.data['f']}

    def _test(apply_func):
        g = generate_graph()
        f = g.ndata['f']

        # an out place run to get result
        g.push(nodes,
               fn.copy_src(src='f', out='m'), fn.sum(msg='m', out='f'), apply_func)
        result = g.ndata['f']

        # inplace deg bucket
        v1 = f.copy()
        g.ndata['f'] = v1
        g.push(nodes, message_func, reduce_func, apply_func, inplace=True)
        r1 = g.ndata['f']
        # check result
        assert np.allclose(r1.asnumpy(), result.asnumpy())
        # check inplace
        assert np.allclose(v1.asnumpy(), r1.asnumpy())

        # inplace v2v spmv
        v1 = f.copy()
        g.ndata['f'] = v1
        g.push(nodes, fn.copy_src(src='f', out='m'),
               fn.sum(msg='m', out='f'), apply_func, inplace=True)
        r1 = g.ndata['f']
        # check result
        assert np.allclose(r1.asnumpy(), result.asnumpy())
        # check inplace
        assert np.allclose(v1.asnumpy(), r1.asnumpy())

        # inplace e2v spmv
        v1 = f.copy()
        g.ndata['f'] = v1
        g.push(nodes,
               message_func, fn.sum(msg='m', out='f'), apply_func, inplace=True)
        r1 = g.ndata['f']
        # check result
        assert np.allclose(r1.asnumpy(), result.asnumpy())
        # check inplace
        assert np.allclose(v1.asnumpy(), r1.asnumpy())

    # test send_and_recv with apply_func
    _test(apply_func)
    # test send_and_recv without apply_func
    _test(None)

def test_inplace_pull():
    nodes = mx.nd.array([1, 2, 3, 9], dtype=np.int64)

    def message_func(edges):
        return {'m' : edges.src['f']}

    def reduce_func(nodes):
        return {'f' : mx.nd.sum(nodes.mailbox['m'], 1)}

    def apply_func(nodes):
        return {'f' : 2 * nodes.data['f']}

    def _test(apply_func):
        g = generate_graph()
        f = g.ndata['f']

        # an out place run to get result
        g.pull(nodes,
               fn.copy_src(src='f', out='m'), fn.sum(msg='m', out='f'), apply_func)
        result = g.ndata['f']

        # inplace deg bucket
        v1 = f.copy()
        g.ndata['f'] = v1
        g.pull(nodes, message_func, reduce_func, apply_func, inplace=True)
        r1 = g.ndata['f']
        # check result
        assert np.allclose(r1.asnumpy(), result.asnumpy())
        # check inplace
        assert np.allclose(v1.asnumpy(), r1.asnumpy())

        # inplace v2v spmv
        v1 = f.copy()
        g.ndata['f'] = v1
        g.pull(nodes, fn.copy_src(src='f', out='m'),
               fn.sum(msg='m', out='f'), apply_func, inplace=True)
        r1 = g.ndata['f']
        # check result
        assert np.allclose(r1.asnumpy(), result.asnumpy())
        # check inplace
        assert np.allclose(v1.asnumpy(), r1.asnumpy())

        # inplace e2v spmv
        v1 = f.copy()
        g.ndata['f'] = v1
        g.pull(nodes,
               message_func, fn.sum(msg='m', out='f'), apply_func, inplace=True)
        r1 = g.ndata['f']
        # check result
        assert np.allclose(r1.asnumpy(), result.asnumpy())
        # check inplace
        assert np.allclose(v1.asnumpy(), r1.asnumpy())

    # test send_and_recv with apply_func
    _test(apply_func)
    # test send_and_recv without apply_func
    _test(None)

def test_inplace_apply():
    def apply_node_func(nodes):
        return {'f': nodes.data['f'] * 2}

    def apply_edge_func(edges):
        return {'e': edges.data['e'] * 2}

    g = generate_graph()
    nodes = [1, 2, 3, 9]
    nf = g.ndata['f']
    # out place run
    g.apply_nodes(apply_node_func, nodes)
    new_nf = g.ndata['f']
    # in place run
    g.ndata['f'] = nf
    g.apply_nodes(apply_node_func, nodes, inplace=True)
    # check results correct and in place
    assert np.allclose(nf.asnumpy(), new_nf.asnumpy())
    # test apply all nodes, should not be done in place
    g.ndata['f'] = nf
    g.apply_nodes(apply_node_func, inplace=True)
    assert np.allclose(nf.asnumpy(), g.ndata['f'].asnumpy()) == False

    edges = [3, 5, 7, 10]
    ef = g.edata['e']
    # out place run
    g.apply_edges(apply_edge_func, edges)
    new_ef = g.edata['e']
    # in place run
    g.edata['e'] = ef
    g.apply_edges(apply_edge_func, edges, inplace=True)
    g.edata['e'] = ef
    assert np.allclose(ef.asnumpy(), new_ef.asnumpy())
    # test apply all edges, should not be done in place
    g.edata['e'] == ef
    g.apply_edges(apply_edge_func, inplace=True)
    assert np.allclose(ef.asnumpy(), g.edata['e'].asnumpy()) == False

if __name__ == '__main__':
    test_inplace_recv()
    test_inplace_snr()
    test_inplace_push()
    test_inplace_pull()
    test_inplace_apply()