test_data.py 3.95 KB
Newer Older
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
import gzip
import io
import os
import tarfile
import tempfile
import unittest

import backend as F

import dgl
import dgl.data as data
import numpy as np
import pandas as pd
import pytest
import yaml
from dgl import DGLError


@unittest.skipIf(
    F._default_context_str == "gpu",
    reason="Datasets don't need to be tested on GPU.",
)
@unittest.skipIf(dgl.backend.backend_name == "mxnet", reason="Skip MXNet")
def test_reddit():
    # RedditDataset
    g = data.RedditDataset()[0]
    assert g.num_nodes() == 232965
    assert g.num_edges() == 114615892
    dst = F.asnumpy(g.edges()[1])
    assert np.array_equal(dst, np.sort(dst))

    transform = dgl.AddSelfLoop(allow_duplicate=True)
    g2 = data.RedditDataset(transform=transform)[0]
    assert g2.num_edges() - g.num_edges() == g.num_nodes()


@unittest.skipIf(
    F._default_context_str == "gpu",
    reason="Datasets don't need to be tested on GPU.",
)
@unittest.skipIf(dgl.backend.backend_name == "mxnet", reason="Skip MXNet")
def test_fakenews():
    transform = dgl.AddSelfLoop(allow_duplicate=True)

    ds = data.FakeNewsDataset("politifact", "bert")
    assert len(ds) == 314
    g = ds[0][0]
    g2 = data.FakeNewsDataset("politifact", "bert", transform=transform)[0][0]
    assert g2.num_edges() - g.num_edges() == g.num_nodes()

    ds = data.FakeNewsDataset("gossipcop", "profile")
    assert len(ds) == 5464
    g = ds[0][0]
    g2 = data.FakeNewsDataset("gossipcop", "profile", transform=transform)[0][0]
    assert g2.num_edges() - g.num_edges() == g.num_nodes()


58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
@unittest.skipIf(
    F._default_context_str == "gpu",
    reason="Datasets don't need to be tested on GPU.",
)
@unittest.skipIf(
    dgl.backend.backend_name != "pytorch", reason="only supports pytorch"
)
def test_peptides_structural():
    transform = dgl.AddSelfLoop(allow_duplicate=True)
    dataset1 = data.PeptidesStructuralDataset()
    g1, label = dataset1[0]
    dataset2 = data.PeptidesStructuralDataset(transform=transform)
    g2, _ = dataset2[0]

    assert g2.num_edges() - g1.num_edges() == g1.num_nodes()
    # return a scalar tensor
    assert not label.shape


77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
@unittest.skipIf(
    F._default_context_str == "gpu",
    reason="Datasets don't need to be tested on GPU.",
)
@unittest.skipIf(dgl.backend.backend_name == "mxnet", reason="Skip MXNet")
def test_as_graphpred():
    ds = data.GINDataset(name="MUTAG", self_loop=True)
    new_ds = data.AsGraphPredDataset(ds, [0.8, 0.1, 0.1], verbose=True)
    assert len(new_ds) == 188
    assert new_ds.num_tasks == 1
    assert new_ds.num_classes == 2

    ds = data.FakeNewsDataset("politifact", "profile")
    new_ds = data.AsGraphPredDataset(ds, verbose=True)
    assert len(new_ds) == 314
    assert new_ds.num_tasks == 1
    assert new_ds.num_classes == 2

    ds = data.QM7bDataset()
    new_ds = data.AsGraphPredDataset(ds, [0.8, 0.1, 0.1], verbose=True)
    assert len(new_ds) == 7211
    assert new_ds.num_tasks == 14
    assert new_ds.num_classes is None

    ds = data.QM9Dataset(label_keys=["mu", "gap"])
    new_ds = data.AsGraphPredDataset(ds, [0.8, 0.1, 0.1], verbose=True)
    assert len(new_ds) == 130831
    assert new_ds.num_tasks == 2
    assert new_ds.num_classes is None

    ds = data.QM9EdgeDataset(label_keys=["mu", "alpha"])
    new_ds = data.AsGraphPredDataset(ds, [0.8, 0.1, 0.1], verbose=True)
    assert len(new_ds) == 130831
    assert new_ds.num_tasks == 2
    assert new_ds.num_classes is None

    ds = data.TUDataset("DD")
    new_ds = data.AsGraphPredDataset(ds, [0.8, 0.1, 0.1], verbose=True)
    assert len(new_ds) == 1178
    assert new_ds.num_tasks == 1
    assert new_ds.num_classes == 2

    ds = data.LegacyTUDataset("DD")
    new_ds = data.AsGraphPredDataset(ds, [0.8, 0.1, 0.1], verbose=True)
    assert len(new_ds) == 1178
    assert new_ds.num_tasks == 1
    assert new_ds.num_classes == 2

    ds = data.BA2MotifDataset()
    new_ds = data.AsGraphPredDataset(ds, [0.8, 0.1, 0.1], verbose=True)
    assert len(new_ds) == 1000
    assert new_ds.num_tasks == 1
    assert new_ds.num_classes == 2