"docs/source/api/python/readout.rst" did not exist on "3a868eb04b23eddfd6655588f90be16dc4e946f5"
kernel.cc 5.82 KB
Newer Older
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
/*!
 *  Copyright (c) 2020 by Contributors
 * \file array/kernel.cc
 * \brief New kernels
 */
#include <dgl/packed_func_ext.h>
#include <dgl/base_heterograph.h>

#include "kernel_decl.h"
#include "../c_api_common.h"

using namespace dgl::runtime;

namespace dgl {
namespace aten {
namespace {

// Check whether the given arguments have the same context.
inline void CheckCtx(
    const DLContext& ctx,
    const std::vector<NDArray>& arrays,
    const std::vector<std::string>& names) {
  for (size_t i = 0; i < arrays.size(); ++i) {
    if (IsNullArray(arrays[i]))
      continue;
    CHECK_EQ(ctx, arrays[i]->ctx)
      << "Expected device context " << ctx << ". But got "
      << arrays[i]->ctx << " for " << names[i] << ".";
  }
}

// Check whether input tensors are contiguous.
inline void CheckContiguous(
    const std::vector<NDArray>& arrays,
    const std::vector<std::string>& names) {
  for (size_t i = 0; i < arrays.size(); ++i) {
    if (IsNullArray(arrays[i]))
      continue;
    CHECK(arrays[i].IsContiguous())
      << "Expect " << names[i] << " to be a contiguous tensor";
  }
}

// Check whether input tensors have valid shape.
inline void CheckShape(
    const std::vector<uint64_t>& gdim,
    const std::vector<int>& uev_idx,
    const std::vector<NDArray>& arrays,
    const std::vector<std::string>& names) {
  for (size_t i = 0; i < arrays.size(); ++i) {
    if (IsNullArray(arrays[i]))
      continue;
    CHECK_GE(arrays[i]->ndim, 2)
      << "Expect " << names[i] << " to have ndim >= 2, "
      << "Note that for scalar feature we expand its "
      << "dimension with an additional dimension of "
      << "length one.";
    CHECK_EQ(gdim[uev_idx[i]], arrays[i]->shape[0])
      << "Expect " << names[i] << " to have size "
      << gdim[uev_idx[i]] << " on the first dimension, "
      << "but got " << arrays[i]->shape[0];
  }
}

}  // namespace

/*! \brief Generalized Sparse Matrix-Matrix Multiplication. */
void SpMM(const std::string& op, const std::string& reduce,
          HeteroGraphPtr graph,
          NDArray ufeat,
          NDArray efeat,
          NDArray out,
          std::vector<NDArray> out_aux,
          SparseFormat format) {
  // TODO(zihao): format tuning
  format = SparseFormat::kCSR;
  const auto& bcast = CalcBcastOff(op, ufeat, efeat);

  ATEN_XPU_SWITCH_CUDA(graph->Context().device_type, XPU, "SpMM", {
    ATEN_ID_TYPE_SWITCH(graph->DataType(), IdType, {
      ATEN_FLOAT_TYPE_SWITCH(out->dtype, DType, "Feature data", {
        if (format == SparseFormat::kCSR) {
          SpMMCsr<XPU, IdType, DType>(
              op, reduce, bcast, graph->GetCSCMatrix(0),
              ufeat, efeat, out, out_aux);
        } else if (format == SparseFormat::kCOO) {
          SpMMCoo<XPU, IdType, DType>(
              op, reduce, bcast, graph->GetCOOMatrix(0),
              ufeat, efeat, out, out_aux);
        } else {
          LOG(FATAL) << "SpMM only supports CSR and COO foramts";
        }
      });
    });
  });
}

/*! \brief Generalized Sampled Dense-Dense Matrix Multiplication. */
void SDDMM(const std::string& op,
           HeteroGraphPtr graph,
           NDArray ufeat,
           NDArray efeat,
           NDArray out,
           SparseFormat format) {
  // TODO(zihao): format tuning
  format = SparseFormat::kCOO;
  const auto& bcast = CalcBcastOff(op, ufeat, efeat);

  ATEN_XPU_SWITCH_CUDA(graph->Context().device_type, XPU, "SDDMM", {
    ATEN_ID_TYPE_SWITCH(graph->DataType(), IdType, {
      ATEN_FLOAT_TYPE_SWITCH(out->dtype, DType, "Feature data", {
        if (format == SparseFormat::kCSR) {
          SDDMMCsr<XPU, IdType, DType>(
              op, bcast, graph->GetCSRMatrix(0),
              ufeat, efeat, out);
        } else if (format == SparseFormat::kCOO) {
          SDDMMCoo<XPU, IdType, DType>(
              op, bcast, graph->GetCOOMatrix(0),
              ufeat, efeat, out);
        } else {
          LOG(FATAL) << "SDDMM only supports CSR and COO foramts";
        }
      });
    });
  });
}

DGL_REGISTER_GLOBAL("sparse._CAPI_DGLKernelSpMM")
.set_body([] (DGLArgs args, DGLRetValue* rv) {
    HeteroGraphRef graph = args[0];
    const std::string op = args[1];
    const std::string reduce_op = args[2];
    NDArray U = args[3];
    NDArray E = args[4];
    NDArray V = args[5];
    NDArray ArgU = args[6];
    NDArray ArgE = args[7];
    CheckCtx(graph->Context(), {U, E, V, ArgU, ArgE},
        {"U_data", "E_data", "out", "Arg_U", "Arg_E"});
    CheckContiguous({U, E, V, ArgU, ArgE},
        {"U_data", "E_data", "out", "Arg_U", "Arg_E"});
    CHECK_EQ(graph->NumEdgeTypes(), 1);
    auto pair = graph->meta_graph()->FindEdge(0);  // only one etype in the graph.
    const dgl_type_t src_vtype = pair.first;
    const dgl_type_t dst_vtype = pair.second;
    CheckShape(
        {graph->NumVertices(src_vtype), graph->NumEdges(0), graph->NumVertices(dst_vtype)},
        {0, 1, 2, 2, 2},
        {U, E, V, ArgU, ArgE},
        {"U_data", "E_data", "out", "Arg_U", "Arg_E"});
    SpMM(op, reduce_op, graph.sptr(), U, E, V, {ArgU, ArgE}, SparseFormat::kAny);
  });

DGL_REGISTER_GLOBAL("sparse._CAPI_DGLKernelSDDMM")
.set_body([] (DGLArgs args, DGLRetValue* rv) {
    HeteroGraphRef graph = args[0];
    const std::string op = args[1];
    NDArray U = args[2];
    NDArray V = args[3];
    NDArray E = args[4];
    CheckCtx(graph->Context(), {U, V, E}, {"U_data", "V_data", "E_data"});
    CheckContiguous({U, V, E}, {"U_data", "V_data", "E_data"});
    CHECK_EQ(graph->NumEdgeTypes(), 1);
    auto pair = graph->meta_graph()->FindEdge(0);  // only one etype in the graph.
    const dgl_type_t src_vtype = pair.first;
    const dgl_type_t dst_vtype = pair.second;
    CheckShape(
        {graph->NumVertices(src_vtype), graph->NumEdges(0), graph->NumVertices(dst_vtype)},
        {0, 1, 2},
        {U, E, V},
        {"U_data", "E_data", "V_data"});
    SDDMM(op, graph.sptr(), U, V, E, SparseFormat::kAny);
  });

}  // namespace aten
}  // namespace dgl