test_integration.py 18.3 KB
Newer Older
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
import dgl
import dgl.graphbolt as gb
import dgl.sparse as dglsp
import torch


def test_integration_link_prediction():
    torch.manual_seed(926)

    indptr = torch.tensor([0, 0, 1, 3, 6, 8, 10])
    indices = torch.tensor([5, 3, 3, 3, 3, 4, 4, 0, 5, 4])

    matrix_a = dglsp.from_csc(indptr, indices)
    node_pairs = torch.t(torch.stack(matrix_a.coo()))
    node_feature_data = torch.tensor(
        [
            [0.9634, 0.2294],
            [0.6172, 0.7865],
            [0.2109, 0.1089],
            [0.8672, 0.2276],
            [0.5503, 0.8223],
            [0.5160, 0.2486],
        ]
    )
    edge_feature_data = torch.tensor(
        [
            [0.5123, 0.1709, 0.6150],
            [0.1476, 0.1902, 0.1314],
            [0.2582, 0.5203, 0.6228],
            [0.3708, 0.7631, 0.2683],
            [0.2126, 0.7878, 0.7225],
            [0.7885, 0.3414, 0.5485],
            [0.4088, 0.8200, 0.1851],
            [0.0056, 0.9469, 0.4432],
            [0.8972, 0.7511, 0.3617],
            [0.5773, 0.2199, 0.3366],
        ]
    )

    item_set = gb.ItemSet(node_pairs, names="node_pairs")
41
    graph = gb.fused_csc_sampling_graph(indptr, indices)
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57

    node_feature = gb.TorchBasedFeature(node_feature_data)
    edge_feature = gb.TorchBasedFeature(edge_feature_data)
    features = {
        ("node", None, "feat"): node_feature,
        ("edge", None, "feat"): edge_feature,
    }
    feature_store = gb.BasicFeatureStore(features)
    datapipe = gb.ItemSampler(item_set, batch_size=4)
    datapipe = datapipe.sample_uniform_negative(graph, 1)
    fanouts = torch.LongTensor([1])
    datapipe = datapipe.sample_neighbor(graph, [fanouts, fanouts], replace=True)
    datapipe = datapipe.transform(gb.exclude_seed_edges)
    datapipe = datapipe.fetch_feature(
        feature_store, node_feature_keys=["feat"], edge_feature_keys=["feat"]
    )
58
    dataloader = gb.DataLoader(
59
60
61
62
        datapipe,
    )
    expected = [
        str(
63
            """MiniBatch(seed_nodes=None,
64
65
66
67
68
69
          sampled_subgraphs=[SampledSubgraphImpl(original_row_node_ids=tensor([5, 3, 1, 2, 0, 4]),
                                               original_edge_ids=None,
                                               original_column_node_ids=tensor([5, 3, 1, 2, 0, 4]),
                                               node_pairs=CSCFormatBase(indptr=tensor([0, 1, 1, 1, 1, 1, 2]),
                                                                        indices=tensor([5, 4]),
                                                          ),
70
                            ),
71
72
73
74
75
76
                            SampledSubgraphImpl(original_row_node_ids=tensor([5, 3, 1, 2, 0, 4]),
                                               original_edge_ids=None,
                                               original_column_node_ids=tensor([5, 3, 1, 2, 0]),
                                               node_pairs=CSCFormatBase(indptr=tensor([0, 1, 1, 1, 1, 1]),
                                                                        indices=tensor([5]),
                                                          ),
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
                            )],
          positive_node_pairs=(tensor([0, 1, 1, 1]),
                              tensor([2, 3, 3, 1])),
          node_pairs_with_labels=((tensor([0, 1, 1, 1, 0, 1, 1, 1]), tensor([2, 3, 3, 1, 4, 4, 1, 4])),
                                 tensor([1., 1., 1., 1., 0., 0., 0., 0.])),
          node_pairs=(tensor([5, 3, 3, 3]),
                     tensor([1, 2, 2, 3])),
          node_features={'feat': tensor([[0.5160, 0.2486],
                                [0.8672, 0.2276],
                                [0.6172, 0.7865],
                                [0.2109, 0.1089],
                                [0.9634, 0.2294],
                                [0.5503, 0.8223]])},
          negative_srcs=tensor([[5],
                                [3],
                                [3],
                                [3]]),
          negative_node_pairs=(tensor([0, 1, 1, 1]),
                              tensor([4, 4, 1, 4])),
          negative_dsts=tensor([[0],
                                [0],
                                [3],
                                [0]]),
          labels=None,
          input_nodes=tensor([5, 3, 1, 2, 0, 4]),
          edge_features=[{},
                        {}],
          compacted_node_pairs=(tensor([0, 1, 1, 1]),
                               tensor([2, 3, 3, 1])),
          compacted_negative_srcs=tensor([[0],
                                          [1],
                                          [1],
                                          [1]]),
          compacted_negative_dsts=tensor([[4],
                                          [4],
                                          [1],
                                          [4]]),
          blocks=[Block(num_src_nodes=6, num_dst_nodes=6, num_edges=2),
                 Block(num_src_nodes=6, num_dst_nodes=5, num_edges=1)],
       )"""
117
118
        ),
        str(
119
            """MiniBatch(seed_nodes=None,
120
121
122
123
124
125
          sampled_subgraphs=[SampledSubgraphImpl(original_row_node_ids=tensor([3, 4, 0, 5, 1]),
                                               original_edge_ids=None,
                                               original_column_node_ids=tensor([3, 4, 0, 5, 1]),
                                               node_pairs=CSCFormatBase(indptr=tensor([0, 0, 0, 0, 1, 2]),
                                                                        indices=tensor([1, 3]),
                                                          ),
126
                            ),
127
128
129
130
131
132
                            SampledSubgraphImpl(original_row_node_ids=tensor([3, 4, 0, 5, 1]),
                                               original_edge_ids=None,
                                               original_column_node_ids=tensor([3, 4, 0, 5, 1]),
                                               node_pairs=CSCFormatBase(indptr=tensor([0, 0, 0, 0, 1, 2]),
                                                                        indices=tensor([1, 3]),
                                                          ),
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
                            )],
          positive_node_pairs=(tensor([0, 1, 1, 2]),
                              tensor([0, 0, 1, 1])),
          node_pairs_with_labels=((tensor([0, 1, 1, 2, 0, 1, 1, 2]), tensor([0, 0, 1, 1, 1, 1, 3, 4])),
                                 tensor([1., 1., 1., 1., 0., 0., 0., 0.])),
          node_pairs=(tensor([3, 4, 4, 0]),
                     tensor([3, 3, 4, 4])),
          node_features={'feat': tensor([[0.8672, 0.2276],
                                [0.5503, 0.8223],
                                [0.9634, 0.2294],
                                [0.5160, 0.2486],
                                [0.6172, 0.7865]])},
          negative_srcs=tensor([[3],
                                [4],
                                [4],
                                [0]]),
          negative_node_pairs=(tensor([0, 1, 1, 2]),
                              tensor([1, 1, 3, 4])),
          negative_dsts=tensor([[4],
                                [4],
                                [5],
                                [1]]),
          labels=None,
          input_nodes=tensor([3, 4, 0, 5, 1]),
          edge_features=[{},
                        {}],
          compacted_node_pairs=(tensor([0, 1, 1, 2]),
                               tensor([0, 0, 1, 1])),
          compacted_negative_srcs=tensor([[0],
                                          [1],
                                          [1],
                                          [2]]),
          compacted_negative_dsts=tensor([[1],
                                          [1],
                                          [3],
                                          [4]]),
          blocks=[Block(num_src_nodes=5, num_dst_nodes=5, num_edges=2),
                 Block(num_src_nodes=5, num_dst_nodes=5, num_edges=2)],
       )"""
172
173
        ),
        str(
174
            """MiniBatch(seed_nodes=None,
175
176
177
178
179
180
          sampled_subgraphs=[SampledSubgraphImpl(original_row_node_ids=tensor([5, 4]),
                                               original_edge_ids=None,
                                               original_column_node_ids=tensor([5, 4]),
                                               node_pairs=CSCFormatBase(indptr=tensor([0, 0, 1]),
                                                                        indices=tensor([1]),
                                                          ),
181
                            ),
182
183
184
185
186
187
                            SampledSubgraphImpl(original_row_node_ids=tensor([5, 4]),
                                               original_edge_ids=None,
                                               original_column_node_ids=tensor([5, 4]),
                                               node_pairs=CSCFormatBase(indptr=tensor([0, 0, 1]),
                                                                        indices=tensor([1]),
                                                          ),
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
                            )],
          positive_node_pairs=(tensor([0, 1]),
                              tensor([0, 0])),
          node_pairs_with_labels=((tensor([0, 1, 0, 1]), tensor([0, 0, 0, 0])),
                                 tensor([1., 1., 0., 0.])),
          node_pairs=(tensor([5, 4]),
                     tensor([5, 5])),
          node_features={'feat': tensor([[0.5160, 0.2486],
                                [0.5503, 0.8223]])},
          negative_srcs=tensor([[5],
                                [4]]),
          negative_node_pairs=(tensor([0, 1]),
                              tensor([0, 0])),
          negative_dsts=tensor([[5],
                                [5]]),
          labels=None,
          input_nodes=tensor([5, 4]),
          edge_features=[{},
                        {}],
          compacted_node_pairs=(tensor([0, 1]),
                               tensor([0, 0])),
          compacted_negative_srcs=tensor([[0],
                                          [1]]),
          compacted_negative_dsts=tensor([[0],
                                          [0]]),
          blocks=[Block(num_src_nodes=2, num_dst_nodes=2, num_edges=1),
                 Block(num_src_nodes=2, num_dst_nodes=2, num_edges=1)],
       )"""
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
        ),
    ]
    for step, data in enumerate(dataloader):
        assert expected[step] == str(data), print(data)


def test_integration_node_classification():
    torch.manual_seed(926)

    indptr = torch.tensor([0, 0, 1, 3, 6, 8, 10])
    indices = torch.tensor([5, 3, 3, 3, 3, 4, 4, 0, 5, 4])

    matrix_a = dglsp.from_csc(indptr, indices)
    node_pairs = torch.t(torch.stack(matrix_a.coo()))
    node_feature_data = torch.tensor(
        [
            [0.9634, 0.2294],
            [0.6172, 0.7865],
            [0.2109, 0.1089],
            [0.8672, 0.2276],
            [0.5503, 0.8223],
            [0.5160, 0.2486],
        ]
    )
    edge_feature_data = torch.tensor(
        [
            [0.5123, 0.1709, 0.6150],
            [0.1476, 0.1902, 0.1314],
            [0.2582, 0.5203, 0.6228],
            [0.3708, 0.7631, 0.2683],
            [0.2126, 0.7878, 0.7225],
            [0.7885, 0.3414, 0.5485],
            [0.4088, 0.8200, 0.1851],
            [0.0056, 0.9469, 0.4432],
            [0.8972, 0.7511, 0.3617],
            [0.5773, 0.2199, 0.3366],
        ]
    )

    item_set = gb.ItemSet(node_pairs, names="node_pairs")
256
    graph = gb.fused_csc_sampling_graph(indptr, indices)
257
258
259
260
261
262
263
264
265
266
267
268
269
270

    node_feature = gb.TorchBasedFeature(node_feature_data)
    edge_feature = gb.TorchBasedFeature(edge_feature_data)
    features = {
        ("node", None, "feat"): node_feature,
        ("edge", None, "feat"): edge_feature,
    }
    feature_store = gb.BasicFeatureStore(features)
    datapipe = gb.ItemSampler(item_set, batch_size=4)
    fanouts = torch.LongTensor([1])
    datapipe = datapipe.sample_neighbor(graph, [fanouts, fanouts], replace=True)
    datapipe = datapipe.fetch_feature(
        feature_store, node_feature_keys=["feat"], edge_feature_keys=["feat"]
    )
271
    dataloader = gb.DataLoader(
272
273
274
275
        datapipe,
    )
    expected = [
        str(
276
            """MiniBatch(seed_nodes=None,
277
278
279
280
281
282
          sampled_subgraphs=[SampledSubgraphImpl(original_row_node_ids=tensor([5, 3, 1, 2, 4]),
                                               original_edge_ids=None,
                                               original_column_node_ids=tensor([5, 3, 1, 2]),
                                               node_pairs=CSCFormatBase(indptr=tensor([0, 1, 2, 3, 4]),
                                                                        indices=tensor([4, 1, 0, 1]),
                                                          ),
283
                            ),
284
285
286
287
288
289
                            SampledSubgraphImpl(original_row_node_ids=tensor([5, 3, 1, 2]),
                                               original_edge_ids=None,
                                               original_column_node_ids=tensor([5, 3, 1, 2]),
                                               node_pairs=CSCFormatBase(indptr=tensor([0, 1, 2, 3, 4]),
                                                                        indices=tensor([0, 1, 0, 1]),
                                                          ),
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
                            )],
          positive_node_pairs=(tensor([0, 1, 1, 1]),
                              tensor([2, 3, 3, 1])),
          node_pairs_with_labels=None,
          node_pairs=(tensor([5, 3, 3, 3]),
                     tensor([1, 2, 2, 3])),
          node_features={'feat': tensor([[0.5160, 0.2486],
                                [0.8672, 0.2276],
                                [0.6172, 0.7865],
                                [0.2109, 0.1089],
                                [0.5503, 0.8223]])},
          negative_srcs=None,
          negative_node_pairs=None,
          negative_dsts=None,
          labels=None,
          input_nodes=tensor([5, 3, 1, 2, 4]),
          edge_features=[{},
                        {}],
          compacted_node_pairs=(tensor([0, 1, 1, 1]),
                               tensor([2, 3, 3, 1])),
          compacted_negative_srcs=None,
          compacted_negative_dsts=None,
          blocks=[Block(num_src_nodes=5, num_dst_nodes=4, num_edges=4),
                 Block(num_src_nodes=4, num_dst_nodes=4, num_edges=4)],
       )"""
315
316
        ),
        str(
317
            """MiniBatch(seed_nodes=None,
318
319
320
321
322
323
          sampled_subgraphs=[SampledSubgraphImpl(original_row_node_ids=tensor([3, 4, 0]),
                                               original_edge_ids=None,
                                               original_column_node_ids=tensor([3, 4, 0]),
                                               node_pairs=CSCFormatBase(indptr=tensor([0, 1, 2, 2]),
                                                                        indices=tensor([0, 2]),
                                                          ),
324
                            ),
325
326
327
328
329
330
                            SampledSubgraphImpl(original_row_node_ids=tensor([3, 4, 0]),
                                               original_edge_ids=None,
                                               original_column_node_ids=tensor([3, 4, 0]),
                                               node_pairs=CSCFormatBase(indptr=tensor([0, 1, 2, 2]),
                                                                        indices=tensor([0, 2]),
                                                          ),
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
                            )],
          positive_node_pairs=(tensor([0, 1, 1, 2]),
                              tensor([0, 0, 1, 1])),
          node_pairs_with_labels=None,
          node_pairs=(tensor([3, 4, 4, 0]),
                     tensor([3, 3, 4, 4])),
          node_features={'feat': tensor([[0.8672, 0.2276],
                                [0.5503, 0.8223],
                                [0.9634, 0.2294]])},
          negative_srcs=None,
          negative_node_pairs=None,
          negative_dsts=None,
          labels=None,
          input_nodes=tensor([3, 4, 0]),
          edge_features=[{},
                        {}],
          compacted_node_pairs=(tensor([0, 1, 1, 2]),
                               tensor([0, 0, 1, 1])),
          compacted_negative_srcs=None,
          compacted_negative_dsts=None,
          blocks=[Block(num_src_nodes=3, num_dst_nodes=3, num_edges=2),
                 Block(num_src_nodes=3, num_dst_nodes=3, num_edges=2)],
       )"""
354
355
        ),
        str(
356
            """MiniBatch(seed_nodes=None,
357
358
359
360
361
362
          sampled_subgraphs=[SampledSubgraphImpl(original_row_node_ids=tensor([5, 4, 0]),
                                               original_edge_ids=None,
                                               original_column_node_ids=tensor([5, 4]),
                                               node_pairs=CSCFormatBase(indptr=tensor([0, 1, 2]),
                                                                        indices=tensor([0, 2]),
                                                          ),
363
                            ),
364
365
366
367
368
369
                            SampledSubgraphImpl(original_row_node_ids=tensor([5, 4]),
                                               original_edge_ids=None,
                                               original_column_node_ids=tensor([5, 4]),
                                               node_pairs=CSCFormatBase(indptr=tensor([0, 1, 2]),
                                                                        indices=tensor([1, 1]),
                                                          ),
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
                            )],
          positive_node_pairs=(tensor([0, 1]),
                              tensor([0, 0])),
          node_pairs_with_labels=None,
          node_pairs=(tensor([5, 4]),
                     tensor([5, 5])),
          node_features={'feat': tensor([[0.5160, 0.2486],
                                [0.5503, 0.8223],
                                [0.9634, 0.2294]])},
          negative_srcs=None,
          negative_node_pairs=None,
          negative_dsts=None,
          labels=None,
          input_nodes=tensor([5, 4, 0]),
          edge_features=[{},
                        {}],
          compacted_node_pairs=(tensor([0, 1]),
                               tensor([0, 0])),
          compacted_negative_srcs=None,
          compacted_negative_dsts=None,
          blocks=[Block(num_src_nodes=3, num_dst_nodes=2, num_edges=2),
                 Block(num_src_nodes=2, num_dst_nodes=2, num_edges=2)],
       )"""
393
394
395
396
        ),
    ]
    for step, data in enumerate(dataloader):
        assert expected[step] == str(data), print(data)