"git@developer.sourcefind.cn:change/sglang.git" did not exist on "65c65776969dddb50f198c4790f801a0d55137ff"
test_heterograph-specialization.py 10 KB
Newer Older
1
2
import numpy as np
import scipy.sparse as sp
3
4
import dgl
import dgl.function as fn
5
import backend as F
nv-dlasalle's avatar
nv-dlasalle committed
6
from test_utils import parametrize_idtype
7

Minjie Wang's avatar
Minjie Wang committed
8
9
D = 5

10
def generate_graph(idtype):
11
    g = dgl.DGLGraph()
12
    g = g.astype(idtype).to(F.ctx())
Minjie Wang's avatar
Minjie Wang committed
13
    g.add_nodes(10)
14
15
    # create a graph where 0 is the source and 9 is the sink
    for i in range(1, 9):
16
17
        g.add_edges(0, i)
        g.add_edges(i, 9)
18
    # add a back flow from 9 to 0
19
    g.add_edges(9, 0)
20
    g.ndata.update({'f1' : F.randn((10,)), 'f2' : F.randn((10, D))})
21
    weights = F.randn((17,))
22
    g.edata.update({'e1': weights, 'e2': F.unsqueeze(weights, 1)})
23
24
    return g

nv-dlasalle's avatar
nv-dlasalle committed
25
@parametrize_idtype
26
def test_v2v_update_all(idtype):
27
    def _test(fld):
28
29
        def message_func(edges):
            return {'m' : edges.src[fld]}
30

31
32
33
        def message_func_edge(edges):
            if len(edges.src[fld].shape) == 1:
                return {'m' : edges.src[fld] * edges.data['e1']}
34
            else:
35
                return {'m' : edges.src[fld] * edges.data['e2']}
36

37
        def reduce_func(nodes):
38
            return {fld : F.sum(nodes.mailbox['m'], 1)}
39

40
41
        def apply_func(nodes):
            return {fld : 2 * nodes.data[fld]}
42
        g = generate_graph(idtype)
43
        # update all
44
        v1 = g.ndata[fld]
45
        g.update_all(fn.copy_u(u=fld, out='m'), fn.sum(msg='m', out=fld), apply_func)
46
        v2 = g.ndata[fld]
47
        g.ndata.update({fld : v1})
Minjie Wang's avatar
Minjie Wang committed
48
        g.update_all(message_func, reduce_func, apply_func)
49
        v3 = g.ndata[fld]
50
        assert F.allclose(v2, v3)
51
        # update all with edge weights
52
        v1 = g.ndata[fld]
53
        g.update_all(fn.u_mul_e(fld, 'e1', 'm'),
Minjie Wang's avatar
Minjie Wang committed
54
                fn.sum(msg='m', out=fld), apply_func)
55
        v2 = g.ndata[fld]
56
        g.ndata.update({fld : v1})
Minjie Wang's avatar
Minjie Wang committed
57
        g.update_all(message_func_edge, reduce_func, apply_func)
58
        v4 = g.ndata[fld]
59
        assert F.allclose(v2, v4)
60
61
62
63
64
    # test 1d node features
    _test('f1')
    # test 2d node features
    _test('f2')

nv-dlasalle's avatar
nv-dlasalle committed
65
@parametrize_idtype
66
67
68
def test_v2v_snr(idtype):
    u = F.tensor([0, 0, 0, 3, 4, 9], idtype)
    v = F.tensor([1, 2, 3, 9, 9, 0], idtype)
69
    def _test(fld):
70
71
        def message_func(edges):
            return {'m' : edges.src[fld]}
72

73
74
75
        def message_func_edge(edges):
            if len(edges.src[fld].shape) == 1:
                return {'m' : edges.src[fld] * edges.data['e1']}
76
            else:
77
                return {'m' : edges.src[fld] * edges.data['e2']}
78

79
        def reduce_func(nodes):
80
            return {fld : F.sum(nodes.mailbox['m'], 1)}
81

82
83
        def apply_func(nodes):
            return {fld : 2 * nodes.data[fld]}
84
        g = generate_graph(idtype)
85
        # send and recv
86
        v1 = g.ndata[fld]
87
        g.send_and_recv((u, v), fn.copy_u(u=fld, out='m'),
Minjie Wang's avatar
Minjie Wang committed
88
                fn.sum(msg='m', out=fld), apply_func)
89
        v2 = g.ndata[fld]
90
        g.ndata.update({fld : v1})
91
92
        g.send_and_recv((u, v), message_func, reduce_func, apply_func)
        v3 = g.ndata[fld]
93
        assert F.allclose(v2, v3)
94
        # send and recv with edge weights
95
        v1 = g.ndata[fld]
96
        g.send_and_recv((u, v), fn.u_mul_e(fld, 'e1', 'm'),
Minjie Wang's avatar
Minjie Wang committed
97
                fn.sum(msg='m', out=fld), apply_func)
98
        v2 = g.ndata[fld]
99
        g.ndata.update({fld : v1})
100
101
        g.send_and_recv((u, v), message_func_edge, reduce_func, apply_func)
        v4 = g.ndata[fld]
102
        assert F.allclose(v2, v4)
103
104
105
106
    # test 1d node features
    _test('f1')
    # test 2d node features
    _test('f2')
107

108

nv-dlasalle's avatar
nv-dlasalle committed
109
@parametrize_idtype
110
111
def test_v2v_pull(idtype):
    nodes = F.tensor([1, 2, 3, 9], idtype)
112
113
114
115
116
117
118
119
120
121
122
    def _test(fld):
        def message_func(edges):
            return {'m' : edges.src[fld]}

        def message_func_edge(edges):
            if len(edges.src[fld].shape) == 1:
                return {'m' : edges.src[fld] * edges.data['e1']}
            else:
                return {'m' : edges.src[fld] * edges.data['e2']}

        def reduce_func(nodes):
123
            return {fld : F.sum(nodes.mailbox['m'], 1)}
124
125
126

        def apply_func(nodes):
            return {fld : 2 * nodes.data[fld]}
127
        g = generate_graph(idtype)
128
129
        # send and recv
        v1 = g.ndata[fld]
130
        g.pull(nodes, fn.copy_u(u=fld, out='m'), fn.sum(msg='m', out=fld), apply_func)
131
132
133
134
        v2 = g.ndata[fld]
        g.ndata[fld] = v1
        g.pull(nodes, message_func, reduce_func, apply_func)
        v3 = g.ndata[fld]
135
        assert F.allclose(v2, v3)
136
137
        # send and recv with edge weights
        v1 = g.ndata[fld]
138
        g.pull(nodes, fn.u_mul_e(fld, 'e1', 'm'),
139
                fn.sum(msg='m', out=fld), apply_func)
140
141
142
143
        v2 = g.ndata[fld]
        g.ndata[fld] = v1
        g.pull(nodes, message_func_edge, reduce_func, apply_func)
        v4 = g.ndata[fld]
144
        assert F.allclose(v2, v4)
145
146
147
148
149
    # test 1d node features
    _test('f1')
    # test 2d node features
    _test('f2')

nv-dlasalle's avatar
nv-dlasalle committed
150
@parametrize_idtype
151
def test_update_all_multi_fallback(idtype):
152
153
    # create a graph with zero in degree nodes
    g = dgl.DGLGraph()
154
    g = g.astype(idtype).to(F.ctx())
155
156
    g.add_nodes(10)
    for i in range(1, 9):
157
158
        g.add_edges(0, i)
        g.add_edges(i, 9)
159
160
161
    g.ndata['h'] = F.randn((10, D))
    g.edata['w1'] = F.randn((16,))
    g.edata['w2'] = F.randn((16, D))
162
    def _mfunc_hxw1(edges):
163
        return {'m1' : edges.src['h'] * F.unsqueeze(edges.data['w1'], 1)}
164
165
166
    def _mfunc_hxw2(edges):
        return {'m2' : edges.src['h'] * edges.data['w2']}
    def _rfunc_m1(nodes):
167
        return {'o1' : F.sum(nodes.mailbox['m1'], 1)}
168
    def _rfunc_m2(nodes):
169
        return {'o2' : F.sum(nodes.mailbox['m2'], 1)}
170
    def _rfunc_m1max(nodes):
171
        return {'o3' : F.max(nodes.mailbox['m1'], 1)}
172
173
174
175
176
177
178
179
180
181
182
183
184
185
    def _afunc(nodes):
        ret = {}
        for k, v in nodes.data.items():
            if k.startswith('o'):
                ret[k] = 2 * v
        return ret
    # compute ground truth
    g.update_all(_mfunc_hxw1, _rfunc_m1, _afunc)
    o1 = g.ndata.pop('o1')
    g.update_all(_mfunc_hxw2, _rfunc_m2, _afunc)
    o2 = g.ndata.pop('o2')
    g.update_all(_mfunc_hxw1, _rfunc_m1max, _afunc)
    o3 = g.ndata.pop('o3')
    # v2v spmv
186
    g.update_all(fn.u_mul_e('h', 'w1', 'm1'),
187
188
                 fn.sum(msg='m1', out='o1'),
                 _afunc)
189
    assert F.allclose(o1, g.ndata.pop('o1'))
190
    # v2v fallback to e2v
191
    g.update_all(fn.u_mul_e('h', 'w2', 'm2'),
192
193
                 fn.sum(msg='m2', out='o2'),
                 _afunc)
194
    assert F.allclose(o2, g.ndata.pop('o2'))
195

nv-dlasalle's avatar
nv-dlasalle committed
196
@parametrize_idtype
197
def test_pull_multi_fallback(idtype):
198
199
    # create a graph with zero in degree nodes
    g = dgl.DGLGraph()
200
    g = g.astype(idtype).to(F.ctx())
201
202
    g.add_nodes(10)
    for i in range(1, 9):
203
204
        g.add_edges(0, i)
        g.add_edges(i, 9)
205
206
207
    g.ndata['h'] = F.randn((10, D))
    g.edata['w1'] = F.randn((16,))
    g.edata['w2'] = F.randn((16, D))
208
    def _mfunc_hxw1(edges):
209
        return {'m1' : edges.src['h'] * F.unsqueeze(edges.data['w1'], 1)}
210
211
212
    def _mfunc_hxw2(edges):
        return {'m2' : edges.src['h'] * edges.data['w2']}
    def _rfunc_m1(nodes):
213
        return {'o1' : F.sum(nodes.mailbox['m1'], 1)}
214
    def _rfunc_m2(nodes):
215
        return {'o2' : F.sum(nodes.mailbox['m2'], 1)}
216
    def _rfunc_m1max(nodes):
217
        return {'o3' : F.max(nodes.mailbox['m1'], 1)}
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
    def _afunc(nodes):
        ret = {}
        for k, v in nodes.data.items():
            if k.startswith('o'):
                ret[k] = 2 * v
        return ret
    # nodes to pull
    def _pull_nodes(nodes):
        # compute ground truth
        g.pull(nodes, _mfunc_hxw1, _rfunc_m1, _afunc)
        o1 = g.ndata.pop('o1')
        g.pull(nodes, _mfunc_hxw2, _rfunc_m2, _afunc)
        o2 = g.ndata.pop('o2')
        g.pull(nodes, _mfunc_hxw1, _rfunc_m1max, _afunc)
        o3 = g.ndata.pop('o3')
        # v2v spmv
234
        g.pull(nodes, fn.u_mul_e('h', 'w1', 'm1'),
235
236
                     fn.sum(msg='m1', out='o1'),
                     _afunc)
237
        assert F.allclose(o1, g.ndata.pop('o1'))
238
        # v2v fallback to e2v
239
        g.pull(nodes, fn.u_mul_e('h', 'w2', 'm2'),
240
241
                     fn.sum(msg='m2', out='o2'),
                     _afunc)
242
        assert F.allclose(o2, g.ndata.pop('o2'))
243
244
245
246
247
248
249
    # test#1: non-0deg nodes
    nodes = [1, 2, 9]
    _pull_nodes(nodes)
    # test#2: 0deg nodes + non-0deg nodes
    nodes = [0, 1, 2, 9]
    _pull_nodes(nodes)

nv-dlasalle's avatar
nv-dlasalle committed
250
@parametrize_idtype
251
def test_spmv_3d_feat(idtype):
252
    def src_mul_edge_udf(edges):
253
        return {'sum': edges.src['h'] * F.unsqueeze(F.unsqueeze(edges.data['h'], 1), 1)}
254
255

    def sum_udf(nodes):
256
        return {'h': F.sum(nodes.mailbox['sum'], 1)}
257
258
259
260
261

    n = 100
    p = 0.1
    a = sp.random(n, n, p, data_rvs=lambda n: np.ones(n))
    g = dgl.DGLGraph(a)
262
    g = g.astype(idtype).to(F.ctx())
263
264
265
    m = g.number_of_edges()

    # test#1: v2v with adj data
266
267
    h = F.randn((n, 5, 5))
    e = F.randn((m,))
268
269
270

    g.ndata['h'] = h
    g.edata['h'] = e
271
    g.update_all(message_func=fn.u_mul_e('h', 'h', 'sum'), reduce_func=fn.sum('sum', 'h')) # 1
272
273
274
275
276
    ans = g.ndata['h']

    g.ndata['h'] = h
    g.edata['h'] = e
    g.update_all(message_func=src_mul_edge_udf, reduce_func=fn.sum('sum', 'h')) # 2
277
    assert F.allclose(g.ndata['h'], ans)
278
279
280
281

    g.ndata['h'] = h
    g.edata['h'] = e
    g.update_all(message_func=src_mul_edge_udf, reduce_func=sum_udf) # 3
282
    assert F.allclose(g.ndata['h'], ans)
283
284
285
286
287

    # test#2: e2v
    def src_mul_edge_udf(edges):
        return {'sum': edges.src['h'] * edges.data['h']}

288
289
    h = F.randn((n, 5, 5))
    e = F.randn((m, 5, 5))
290
291
292

    g.ndata['h'] = h
    g.edata['h'] = e
293
    g.update_all(message_func=fn.u_mul_e('h', 'h', 'sum'), reduce_func=fn.sum('sum', 'h')) # 1
294
295
296
297
298
    ans = g.ndata['h']

    g.ndata['h'] = h
    g.edata['h'] = e
    g.update_all(message_func=src_mul_edge_udf, reduce_func=fn.sum('sum', 'h')) # 2
299
    assert F.allclose(g.ndata['h'], ans)
300
301
302
303

    g.ndata['h'] = h
    g.edata['h'] = e
    g.update_all(message_func=src_mul_edge_udf, reduce_func=sum_udf) # 3
304
    assert F.allclose(g.ndata['h'], ans)
305

306
if __name__ == '__main__':
307
308
    test_v2v_update_all()
    test_v2v_snr()
309
    test_v2v_pull()
310
311
312
313
314
    test_v2v_update_all_multi_fn()
    test_v2v_snr_multi_fn()
    test_e2v_update_all_multi_fn()
    test_e2v_snr_multi_fn()
    test_e2v_recv_multi_fn()
315
316
    test_update_all_multi_fallback()
    test_pull_multi_fallback()
317
    test_spmv_3d_feat()