adaptive_sampling.py 19.6 KB
Newer Older
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
import torch
import torch.nn as nn
import torch.nn.functional as F
import dgl
import dgl.function as fn
import numpy as np
import scipy.sparse as ssp
from dgl.data import citation_graph as citegrh
import networkx as nx

##load data
##cora dataset have 2708 nodes, 1208 of them is used as train set 1000 of them is used as test set
data = citegrh.load_cora()
adj = nx.adjacency_matrix(data.graph)
# reorder
n_nodes = 2708
ids_shuffle = np.arange(n_nodes)
np.random.shuffle(ids_shuffle)
adj = adj[ids_shuffle, :][:, ids_shuffle]
data.features = data.features[ids_shuffle]
data.labels = data.labels[ids_shuffle]
##train-test split
train_nodes = np.arange(1208)
test_nodes = np.arange(1708, 2708)
train_adj = adj[train_nodes, :][:, train_nodes]
test_adj = adj[test_nodes, :][:, test_nodes]
trainG = dgl.DGLGraph(train_adj)
allG = dgl.DGLGraph(adj)
h = torch.tensor(data.features[train_nodes], dtype=torch.float32)
test_h = torch.tensor(data.features[test_nodes], dtype=torch.float32)
all_h = torch.tensor(data.features, dtype=torch.float32)
train_nodes = torch.tensor(train_nodes)
test_nodes = torch.tensor(test_nodes)
y_train = torch.tensor(data.labels[train_nodes])
y_test = torch.tensor(data.labels[test_nodes])
input_size = h.shape[1]
output_size = data.num_labels

##configuration
config = {
    'n_epoch': 300,
    'lamb': 0.5,
    'lr': 1e-3,
    'weight_decay': 5e-4,
    'hidden_size': 16,
    ##sample size for each layer during training
    'batch_size': 256,
    ##sample size for each layer during test
    'test_batch_size': 64,
    'test_layer_sizes': [64 * 8, 64 * 8],
}


class NodeSampler(object):
    """Minibatch sampler that samples batches of nodes uniformly from the given graph and list of seeds.
    """

    def __init__(self, graph, seeds, batch_size):
        self.seeds = seeds
        self.batch_size = batch_size
        self.graph = graph

    def __len__(self):
        return len(self.seeds) // self.batch_size

    def __iter__(self):
        """Returns
        (1) The seed node IDs, for NodeFlow generation,
        (2) Indices of the seeds in the original seed array, as auxiliary data.
        """
        batches = torch.randperm(len(self.seeds)).split(self.batch_size)
        for i in range(len(self)):
            if len(batches[i]) < self.batch_size:
                break
            else:
                yield self.seeds[batches[i]], batches[i]


def create_nodeflow(layer_mappings, block_mappings, block_aux_data, rel_graphs, seed_map):
    hg = dgl.hetero_from_relations(rel_graphs)
    hg.layer_mappings = layer_mappings
    hg.block_mappings = block_mappings
    hg.block_aux_data = block_aux_data
    hg.seed_map = seed_map
    return hg


def normalize_adj(adj):
    """Symmetrically normalize adjacency matrix."""
    adj = ssp.eye(adj.shape[0]) + adj
    adj = ssp.coo_matrix(adj)
    rowsum = np.array(adj.sum(1))
    d_inv_sqrt = np.power(rowsum, -0.5).flatten()
    d_inv_sqrt[np.isinf(d_inv_sqrt)] = 0.
    d_mat_inv_sqrt = ssp.diags(d_inv_sqrt)
    return adj.dot(d_mat_inv_sqrt).transpose().dot(d_mat_inv_sqrt)


class AdaptGenerator(object):
    """
    Nodeflow generator used for adaptive sampling

    """

    def __init__(self, graph, num_blocks, node_feature=None, sampler=None, num_workers=0, coalesce=False,
                 sampler_weights=None, layer_nodes=None):
        self.node_feature = node_feature
        adj = graph.adjacency_matrix_scipy()
        adj.data = np.ones(adj.nnz)
        self.norm_adj = normalize_adj(adj).tocsr()
        self.layer_nodes = layer_nodes
        if sampler_weights is not None:
            self.sample_weights = sampler_weights
        else:
            self.sample_weights = nn.Parameter(torch.randn((input_size, 2), dtype=torch.float32))
            nn.init.xavier_uniform_(self.sample_weights)
        self.graph = graph
        self.num_blocks = num_blocks
        self.coalesce = coalesce
        self.sampler = sampler

    def __iter__(self):
        for sampled in self.sampler:
            seeds = sampled[0]
            auxiliary = sampled[1:]
            hg = self(seeds, *auxiliary)
            yield (hg, auxiliary[0])

    def __call__(self, seeds, *auxiliary):
        """
           The __call__ function must take in an array of seeds, and any auxiliary data, and
           return a NodeFlow grown from the seeds and conditioned on the auxiliary data.
        """
        curr_frontier = seeds  # Current frontier to grow neighbors from
        layer_mappings = []  # Mapping from layer node ID to parent node ID
        block_mappings = []  # Mapping from block edge ID to parent edge ID, or -1 if nonexistent
        block_aux_data = []
        rel_graphs = []

        if self.coalesce:
            curr_frontier = torch.LongTensor(np.unique(seeds.numpy()))
            invmap = {x: i for i, x in enumerate(curr_frontier.numpy())}
            seed_map = [invmap[x] for x in seeds.numpy()]
        else:
            seed_map = list(range(len(seeds)))

        layer_mappings.append(curr_frontier.numpy())

        for i in reversed(range(self.num_blocks)):
            neighbor_nodes, neighbor_edges, num_neighbors, aux_result = self.stepback(curr_frontier, i, *auxiliary)
            prev_frontier_srcs = neighbor_nodes
            # The un-coalesced mapping from block edge ID to parent edge ID
            prev_frontier_edges = neighbor_edges.numpy()
            nodes_idx_map = dict({*zip(neighbor_nodes.numpy(), range(len(aux_result)))})
            # Coalesce nodes
            if self.coalesce:
                prev_frontier = np.unique(prev_frontier_srcs.numpy())
                prev_frontier_invmap = {x: j for j, x in enumerate(prev_frontier)}
                block_srcs = np.array([prev_frontier_invmap[s] for s in prev_frontier_srcs.numpy()])
            else:
                prev_frontier = prev_frontier_srcs.numpy()
                block_srcs = np.arange(len(prev_frontier_edges))
            aux_result = aux_result[[nodes_idx_map[i] for i in prev_frontier]]
            block_dsts = np.arange(len(curr_frontier)).repeat(num_neighbors)

            rel_graphs.insert(0, dgl.bipartite(
                (block_srcs, block_dsts),
                'layer%d' % i, 'block%d' % i, 'layer%d' % (i + 1),
                (len(prev_frontier), len(curr_frontier))
            ))

            layer_mappings.insert(0, prev_frontier)
            block_mappings.insert(0, prev_frontier_edges)
            block_aux_data.insert(0, aux_result)

            curr_frontier = torch.LongTensor(prev_frontier)

        return create_nodeflow(
            layer_mappings=layer_mappings,
            block_mappings=block_mappings,
            block_aux_data=block_aux_data,
            rel_graphs=rel_graphs,
            seed_map=seed_map)

    def stepback(self, curr_frontier, layer_index, *auxiliary):
        """Function that takes in the node set in the current layer, and returns the
        neighbors of each node.

        Parameters
        ----------
        curr_frontier : Tensor
        auxiliary : any auxiliary data yielded by the sampler

        Returns
        -------
        neighbor_nodes, incoming_edges, num_neighbors, auxiliary: Tensor, Tensor, Tensor, any
            num_neighbors[i] contains the number of neighbors generated for curr_frontier[i]

            neighbor_nodes[sum(num_neighbors[0:i]):sum(num_neighbors[0:i+1])] contains the actual
            neighbors as node IDs in the original graph for curr_frontier[i].

            incoming_edges[sum(num_neighbors[0:i]):sum(num_neighbors[0:i+1])] contains the actual
            incoming edges as edge IDs in the original graph for curr_frontier[i], or -1 if the
            edge does not exist, or if we don't care about the edge, in the original graph.

            auxiliary could be of any type containing block-specific additional data.
        """

        # Relies on that the same dst node of in_edges are contiguous, and the dst nodes
        # are ordered the same as curr_frontier.

        sample_weights = self.sample_weights
        layer_size = self.layer_nodes[layer_index]

        src, des, eid = self.graph.in_edges(curr_frontier, form='all')
        neighbor_nodes = torch.unique(torch.cat((curr_frontier, src), dim=0), sorted=False)
        sparse_adj = self.norm_adj[curr_frontier, :][:, neighbor_nodes]
        square_adj = sparse_adj.multiply(sparse_adj).sum(0)

        tensor_adj = torch.FloatTensor(square_adj.A[0])
        ##compute sampling probability for next layer which is decided by :
        # 1. attention part derived from node hidden feature
        # 2. adjacency part derived from graph structure
        hu = torch.matmul(self.node_feature[neighbor_nodes], sample_weights[:, 0])
        hv = torch.sum(torch.matmul(self.node_feature[curr_frontier], sample_weights[:, 1]))
        adj_part = torch.sqrt(tensor_adj)
        attention_part = F.relu(hv + hu) + 1
        gu = F.relu(hu) + 1
        probas = adj_part * attention_part * gu
        probas = probas / torch.sum(probas)
        ##build graph between candidates and curr_frontier
        candidates = neighbor_nodes[probas.multinomial(num_samples=layer_size, replacement=True)]
        ivmap = {x: i for i, x in enumerate(neighbor_nodes.numpy())}
        # use matrix operation in pytorch to avoid for-loop
        curr_padding = curr_frontier.repeat_interleave(len(candidates))
        cand_padding = candidates.repeat(len(curr_frontier))
        ##the edges between candidates and curr_frontier composed of
        # 1. edges in orginal graph
        # 2. edges between same node(self-loop)
        has_loops = curr_padding == cand_padding
        has_edges = self.graph.has_edges_between(cand_padding, curr_padding)
        loops_or_edges = (has_edges.bool() + has_loops).int()
        # get neighbor_nodes and corresponding sampling probability
        num_neighbors = loops_or_edges.reshape((len(curr_frontier), -1)).sum(1)
        sample_neighbor = cand_padding[loops_or_edges.bool()]
        q_prob = probas[[ivmap[i] for i in sample_neighbor.numpy()]]

        # get the edge mapping ,-1 if the edge dostn't exist
        eids = torch.zeros(torch.sum(num_neighbors), dtype=torch.int64) - 1
        has_edge_ids = torch.where(has_edges)[0]
        all_ids = torch.where(loops_or_edges)[0]
        edges_ids_map = torch.where(has_edge_ids[:, None] == all_ids[None, :])[1]
        eids[edges_ids_map] = self.graph.edge_ids(cand_padding, curr_padding)

        return sample_neighbor, eids, num_neighbors, q_prob


class AdaptSAGEConv(nn.Module):
    def __init__(self,
                 in_feats,
                 out_feats,
                 aggregator_type='mean',
                 feat_drop=0.,
                 bias=True,
                 norm=None,
                 activation=None,
                 G=None):
        super(AdaptSAGEConv, self).__init__()
        self._in_feats = in_feats
        self._out_feats = out_feats
        self.norm = norm
        self.feat_drop = nn.Dropout(feat_drop)
        self.activation = activation
        # self.fc_self = nn.Linear(in_feats, out_feats, bias=bias).double()
        self.fc_neigh = nn.Linear(in_feats, out_feats, bias=bias)
        self.reset_parameters()
        self.G = G

    def reset_parameters(self):
        gain = nn.init.calculate_gain('relu')
        # nn.init.xavier_uniform_(self.fc_self.weight, gain=gain)
        nn.init.xavier_uniform_(self.fc_neigh.weight, gain=gain)

    def forward(self, graph, hidden_feat, node_feat, layer_id, sample_weights, norm_adj=None, var_loss=None,
                is_test=False):
        """
        graph: Bipartite.  Has two edge types.  The first one represents the connection to
        the desired nodes from neighbors.  The second one represents the computation
        dependence of the desired nodes themselves.
        :type graph: dgl.DGLHeteroGraph
        """
        # local_var is not implemented for heterograph
        # graph = graph.local_var()

        neighbor_etype_name = 'block%d' % layer_id
        src_name = 'layer%d' % layer_id
        dst_name = 'layer%d' % (layer_id + 1)

        graph.nodes[src_name].data['hidden_feat'] = hidden_feat
        graph.nodes[src_name].data['node_feat'] = node_feat[graph.layer_mappings[layer_id]]
        ##normalized degree for node_i is defined as  1/sqrt(d_i+1)
        ##use the training graph during training and whole graph during testing
        if not is_test:
            graph.nodes[src_name].data['norm_deg'] = 1 / torch.sqrt(
                trainG.in_degrees(graph.layer_mappings[layer_id]).float() + 1)
            graph.nodes[dst_name].data['norm_deg'] = 1 / torch.sqrt(
                trainG.in_degrees(graph.layer_mappings[layer_id + 1]).float() + 1)
        else:
            graph.nodes[src_name].data['norm_deg'] = 1 / torch.sqrt(
                allG.in_degrees(graph.layer_mappings[layer_id]).float() + 1)
            graph.nodes[dst_name].data['norm_deg'] = 1 / torch.sqrt(
                allG.in_degrees(graph.layer_mappings[layer_id + 1]).float() + 1)
        graph.nodes[dst_name].data['node_feat'] = node_feat[graph.layer_mappings[layer_id + 1]]
        graph.nodes[src_name].data['q_probs'] = graph.block_aux_data[layer_id]

        def send_func(edges):

            hu = torch.matmul(edges.src['node_feat'], sample_weights[:, 0])
            hv = torch.matmul(edges.dst['node_feat'], sample_weights[:, 1])
            ##attention coeffient is adjusted by normalized degree and sampling probability
            attentions = edges.src['norm_deg'] * edges.dst['norm_deg'] * (F.relu(hu + hv) + 0.1) / edges.src[
                'q_probs'] / len(hu)

            hidden = edges.src['hidden_feat'] * torch.reshape(attentions, [-1, 1])
            return {"hidden": hidden}

        recv_func = dgl.function.sum('hidden', 'neigh')
        # def receive_fuc(nodes):
        # aggregate from neighbors
        graph[neighbor_etype_name].update_all(message_func=send_func, reduce_func=recv_func)
        h_neigh = graph.nodes[dst_name].data['neigh']
        rst = self.fc_neigh(h_neigh)

        # activation
        if self.activation is not None:
            rst = self.activation(rst)
        # normalization
        if self.norm is not None:
            rst = self.norm(rst)
        # compute the variance loss according to the formula in orginal paper
        if var_loss and not is_test:
            pre_sup = self.fc_neigh(hidden_feat)  # u*h
            ##normalized adjacency matrix for nodeflow layer
            support = norm_adj[graph.layer_mappings[layer_id + 1], :][:, graph.layer_mappings[layer_id]]  ##v*u
            hu = torch.matmul(node_feat[graph.layer_mappings[layer_id]], sample_weights[:, 0])
            hv = torch.matmul(node_feat[graph.layer_mappings[layer_id + 1]], sample_weights[:, 1])
            attentions = (F.relu(torch.reshape(hu, [1, -1]) + torch.reshape(hv, [-1, 1])) + 1) / graph.block_aux_data[
                layer_id] / len(hu)
            adjust_support = torch.tensor(support.A, dtype=torch.float32) * attentions
            support_mean = adjust_support.sum(0)
            mu_v = torch.mean(rst, dim=0)  # h
            diff = torch.reshape(support_mean, [-1, 1]) * pre_sup - torch.reshape(mu_v, [1, -1])
            loss = torch.sum(diff * diff) / len(hu) / len(hv)
            return rst, loss
        return rst


class AdaptGraphSAGENet(nn.Module):
    def __init__(self, sample_weights, node_feature, hidden_size):
        super().__init__()
        self.layers = nn.ModuleList([
            AdaptSAGEConv(input_size, hidden_size, 'mean', bias=False, activation=F.relu),
            AdaptSAGEConv(hidden_size, output_size, 'mean', bias=False, activation=F.relu),
        ])
        self.sample_weights = sample_weights
        self.node_feature = node_feature
        self.norm_adj = normalize_adj(trainG.adjacency_matrix_scipy())

    def forward(self, nf, h, is_test=False):
        for i, layer in enumerate(self.layers):
            if i == len(self.layers) - 1 and not is_test:
                h, loss = layer(nf, h, self.node_feature, i, self.sample_weights, norm_adj=self.norm_adj, var_loss=True,
                                is_test=is_test)
            else:
                h = layer(nf, h, self.node_feature, i, self.sample_weights, is_test=is_test)
        if is_test:
            return h
        return h, loss


def main(args):
    config.update(args)
    config['layer_sizes'] = [int(config['node_per_layer']) for _ in range(2)]
    # Create a sampler for training nodes and testing nodes
    train_sampler = NodeSampler(graph=trainG, seeds=train_nodes, batch_size=config['batch_size'])
    test_sampler = NodeSampler(graph=allG, seeds=test_nodes, batch_size=config['test_batch_size'])
    ##Generator for training
    train_generator = AdaptGenerator(graph=trainG, node_feature=all_h, layer_nodes=config['layer_sizes'],
                                     sampler=train_sampler,
                                     num_blocks=len(config['layer_sizes']), coalesce=True)
    # Generator for testing
    test_sample_generator = AdaptGenerator(graph=allG, node_feature=all_h, sampler=test_sampler,
                                           num_blocks=len(config['test_layer_sizes']),
                                           sampler_weights=train_generator.sample_weights,
                                           layer_nodes=config['test_layer_sizes'],
                                           coalesce=True)
    model = AdaptGraphSAGENet(train_generator.sample_weights, all_h, config['hidden_size'])
    params = list(model.parameters())
    params.append(train_generator.sample_weights)
    opt = torch.optim.Adam(params=params, lr=config['lr'])
    # model.train()
    lamb, weight_decay = config['lamb'], config['weight_decay']
    for epoch in range(config['n_epoch']):
        train_accs = []
        for nf, sample_indices in train_generator:
            seed_map = nf.seed_map
            train_y_hat, varloss = model(nf, h[nf.layer_mappings[0]])
            train_y_hat = train_y_hat[seed_map]
            y_train_batch = y_train[sample_indices]
            y_pred = torch.argmax(train_y_hat, dim=1)
            train_acc = torch.sum(torch.eq(y_pred, y_train_batch)).item() / config['batch_size']
            train_accs.append(train_acc)
            loss = F.cross_entropy(train_y_hat.squeeze(), y_train_batch)
            l2_loss = torch.norm(params[0])
            total_loss = varloss * lamb + loss + l2_loss * weight_decay
            opt.zero_grad()
            total_loss.backward()
            opt.step()
            # print(train_sampler.sample_weight)
        test_accs = []
        for test_nf, test_sample_indices in test_sample_generator:
            seed_map = test_nf.seed_map
            # print(test_sample_indices)
            test_y_hat = model(test_nf, all_h[test_nf.layer_mappings[0]], is_test=True)
            # print("test",test_y_hat)
            test_y_hat = test_y_hat[seed_map]
            y_test_batch = y_test[test_sample_indices]
            y_pred = torch.argmax(test_y_hat, dim=1)
            test_acc = torch.sum(torch.eq(y_pred, y_test_batch)).item() / len(y_pred)
            test_accs.append(test_acc)
        print("eqoch{} train accuracy {}, regloss {}, loss {} ,test accuracy {}".format(epoch, np.mean(train_acc),
                                                                                        varloss.item() * lamb,
                                                                                        total_loss.item(),
                                                                                        np.mean(test_accs)))


if __name__ == "__main__":
    import argparse

    parser = argparse.ArgumentParser('Adaptive Sampling for CCN')
    parser.add_argument('-b', '--batch_size', type=int, default=256,
                        help='batch size')
    parser.add_argument('-l', '--node_per_layer', type=float, default=256,
                        help='sampling size for each layer')

    args = parser.parse_args().__dict__

    main(args)