neighbor_sampler.hip 31.1 KB
Newer Older
sangwzh's avatar
sangwzh committed
1
2
3
// !!! This is a file automatically generated by hipify!!!
#include "hip/hip_runtime.h"
#include "hip/hip_bf16.h"
4
5
6
7
8
9
10
/**
 *  Copyright (c) 2023 by Contributors
 *  Copyright (c) 2023, GT-TDAlab (Muhammed Fatih Balin & Umit V. Catalyurek)
 * @file cuda/index_select_impl.cu
 * @brief Index select operator implementation on CUDA.
 */
#include <c10/core/ScalarType.h>
11
#include <graphbolt/continuous_seed.h>
sangwzh's avatar
sangwzh committed
12
#include <hiprand/hiprand_kernel.h>
13
14
#include <graphbolt/cuda_ops.h>
#include <graphbolt/cuda_sampling_ops.h>
15
#include <thrust/copy.h>
16
17
18
19
#include <thrust/gather.h>
#include <thrust/iterator/counting_iterator.h>
#include <thrust/iterator/transform_iterator.h>
#include <thrust/iterator/transform_output_iterator.h>
sangwzh's avatar
sangwzh committed
20
#include <hipcub/backend/rocprim/device/device_copy.hpp>
21
22
23

#include <algorithm>
#include <array>
sangwzh's avatar
sangwzh committed
24
#include <hipcub/hipcub.hpp>
25
26
27
28
29
#include <limits>
#include <numeric>
#include <type_traits>

#include "../random.h"
30
#include "../utils.h"
sangwzh's avatar
sangwzh committed
31
32
#include "common.h"
#include "utils.h"
33

sangwzh's avatar
sangwzh committed
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
namespace rocprim{
namespace detail{

template<>
struct float_bit_mask<__hip_bfloat16>
{
    static constexpr uint16_t sign_bit = 0x8000;
    static constexpr uint16_t exponent = 0x7F80;
    static constexpr uint16_t mantissa = 0x007F;
    using bit_type = uint16_t;
};

template<>
struct radix_key_codec_base<__hip_bfloat16> : radix_key_codec_floating<__hip_bfloat16, unsigned short> { 
};
}
}
sangwz's avatar
sangwz committed
51
#if HIP_VERSION_MAJOR<6
sangwzh's avatar
sangwzh committed
52
53
54
55
__host__ __device__ bool operator>(const __hip_bfloat16& a, const __hip_bfloat16& b)
{
  return float(a)>float(b);
}
sangwz's avatar
sangwz committed
56
#endif
57
58
59
60
61
62

namespace graphbolt {
namespace ops {

constexpr int BLOCK_SIZE = 128;

63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
inline __device__ int64_t AtomicMax(int64_t* const address, const int64_t val) {
  // To match the type of "::atomicCAS", ignore lint warning.
  using Type = unsigned long long int;  // NOLINT

  static_assert(sizeof(Type) == sizeof(*address), "Type width must match");

  return atomicMax(reinterpret_cast<Type*>(address), static_cast<Type>(val));
}

inline __device__ int32_t AtomicMax(int32_t* const address, const int32_t val) {
  // To match the type of "::atomicCAS", ignore lint warning.
  using Type = int;  // NOLINT

  static_assert(sizeof(Type) == sizeof(*address), "Type width must match");

  return atomicMax(reinterpret_cast<Type*>(address), static_cast<Type>(val));
}

/**
 * @brief Performs neighbor sampling and fills the edge_ids array with
 * original edge ids if sliced_indptr is valid. If not, then it fills the edge
 * ids array with numbers upto the node degree.
 */
template <typename indptr_t, typename indices_t>
__global__ void _ComputeRandomsNS(
    const int64_t num_edges, const indptr_t* const sliced_indptr,
    const indptr_t* const sub_indptr, const indptr_t* const output_indptr,
    const indices_t* const csr_rows, const uint64_t random_seed,
    indptr_t* edge_ids) {
  int64_t i = blockIdx.x * blockDim.x + threadIdx.x;
  const int stride = gridDim.x * blockDim.x;

sangwz's avatar
sangwz committed
95
96
  hiprandStatePhilox4_32_10_t rng;
  hiprand_init(random_seed, i, 0, &rng);
97
98
99
100
101
102
103

  while (i < num_edges) {
    const auto row_position = csr_rows[i];
    const auto row_offset = i - sub_indptr[row_position];
    const auto output_offset = output_indptr[row_position];
    const auto fanout = output_indptr[row_position + 1] - output_offset;
    const auto rnd =
sangwz's avatar
sangwz committed
104
        row_offset < fanout ? row_offset : hiprand(&rng) % (row_offset + 1);
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
    if (rnd < fanout) {
      const indptr_t edge_id =
          row_offset + (sliced_indptr ? sliced_indptr[row_position] : 0);
#if __CUDA_ARCH__ >= 700
      ::cuda::atomic_ref<indptr_t, ::cuda::thread_scope_device> a(
          edge_ids[output_offset + rnd]);
      a.fetch_max(edge_id, ::cuda::std::memory_order_relaxed);
#else
      AtomicMax(edge_ids + output_offset + rnd, edge_id);
#endif  // __CUDA_ARCH__
    }

    i += stride;
  }
}

121
122
123
124
125
126
127
128
129
130
131
/**
 * @brief Fills the random_arr with random numbers and the edge_ids array with
 * original edge ids. When random_arr is sorted along with edge_ids, the first
 * fanout elements of each row gives us the sampled edges.
 */
template <
    typename float_t, typename indptr_t, typename indices_t, typename weights_t,
    typename edge_id_t>
__global__ void _ComputeRandoms(
    const int64_t num_edges, const indptr_t* const sliced_indptr,
    const indptr_t* const sub_indptr, const indices_t* const csr_rows,
132
    const weights_t* const sliced_weights, const indices_t* const indices,
133
    const continuous_seed random_seed, float_t* random_arr,
sangwz's avatar
sangwz committed
134
    // const unsigned long long random_seed, float_t* random_arr,
135
    edge_id_t* edge_ids) {
136
137
  int64_t i = blockIdx.x * blockDim.x + threadIdx.x;
  const int stride = gridDim.x * blockDim.x;
sangwzh's avatar
sangwzh committed
138
  hiprandStatePhilox4_32_10_t rng;
139
140
141
142
143
144
  const auto labor = indices != nullptr;

  while (i < num_edges) {
    const auto row_position = csr_rows[i];
    const auto row_offset = i - sub_indptr[row_position];
    const auto in_idx = sliced_indptr[row_position] + row_offset;
sangwz's avatar
sangwz committed
145
    const auto rnd = random_seed.uniform(labor ? indices[in_idx] : i);
146
147
    const auto prob =
        sliced_weights ? sliced_weights[i] : static_cast<weights_t>(1);
148
149
150
151
152
153
154
155
156
157
158
    const auto exp_rnd = -__logf(rnd);
    const float_t adjusted_rnd = prob > 0
                                     ? static_cast<float_t>(exp_rnd / prob)
                                     : std::numeric_limits<float_t>::infinity();
    random_arr[i] = adjusted_rnd;
    edge_ids[i] = row_offset;

    i += stride;
  }
}

159
160
161
162
163
164
165
struct IsPositive {
  template <typename probs_t>
  __host__ __device__ auto operator()(probs_t x) {
    return x > 0;
  }
};

166
167
168
template <typename indptr_t>
struct MinInDegreeFanout {
  const indptr_t* in_degree;
169
170
  const int64_t* fanouts;
  size_t num_fanouts;
171
172
  __host__ __device__ auto operator()(int64_t i) {
    return static_cast<indptr_t>(
173
        min(static_cast<int64_t>(in_degree[i]), fanouts[i % num_fanouts]));
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
  }
};

template <typename indptr_t, typename indices_t>
struct IteratorFunc {
  indptr_t* indptr;
  indices_t* indices;
  __host__ __device__ auto operator()(int64_t i) { return indices + indptr[i]; }
};

template <typename indptr_t>
struct AddOffset {
  indptr_t offset;
  template <typename edge_id_t>
  __host__ __device__ indptr_t operator()(edge_id_t x) {
    return x + offset;
  }
};

template <typename indptr_t, typename indices_t>
struct IteratorFuncAddOffset {
  indptr_t* indptr;
  indptr_t* sliced_indptr;
  indices_t* indices;
  __host__ __device__ auto operator()(int64_t i) {
    return thrust::transform_output_iterator{
        indices + indptr[i], AddOffset<indptr_t>{sliced_indptr[i]}};
  }
};

204
205
206
207
208
template <typename indptr_t, typename in_degree_iterator_t>
struct SegmentEndFunc {
  indptr_t* indptr;
  in_degree_iterator_t in_degree;
  __host__ __device__ auto operator()(int64_t i) {
sangwz's avatar
sangwz committed
209
          return indptr[i] + in_degree[i];
210
211
212
  }
};

213
c10::intrusive_ptr<sampling::FusedSampledSubgraph> SampleNeighbors(
214
    torch::Tensor indptr, torch::Tensor indices,
215
216
217
218
    torch::optional<torch::Tensor> seeds,
    torch::optional<std::vector<int64_t>> seed_offsets,
    const std::vector<int64_t>& fanouts, bool replace, bool layer,
    bool return_eids, torch::optional<torch::Tensor> type_per_edge,
219
    torch::optional<torch::Tensor> probs_or_mask,
220
    torch::optional<torch::Tensor> node_type_offset,
221
222
    torch::optional<torch::Dict<std::string, int64_t>> node_type_to_id,
    torch::optional<torch::Dict<std::string, int64_t>> edge_type_to_id,
223
224
    torch::optional<torch::Tensor> random_seed_tensor,
    float seed2_contribution) {
225
226
227
228
  // When seed_offsets.has_value() in the hetero case, we compute the output of
  // sample_neighbors _convert_to_sampled_subgraph in a fused manner so that
  // _convert_to_sampled_subgraph only has to perform slices over the returned
  // indptr and indices tensors to form CSC outputs for each edge type.
229
  TORCH_CHECK(!replace, "Sampling with replacement is not supported yet!");
230
  // Assume that indptr, indices, seeds, type_per_edge and probs_or_mask
231
232
233
  // are all resident on the GPU. If not, it is better to first extract them
  // before calling this function.
  auto allocator = cuda::GetAllocator();
234
  auto num_rows =
235
      seeds.has_value() ? seeds.value().size(0) : indptr.size(0) - 1;
236
237
238
239
240
241
242
243
244
245
  auto fanouts_pinned = torch::empty(
      fanouts.size(),
      c10::TensorOptions().dtype(torch::kLong).pinned_memory(true));
  auto fanouts_pinned_ptr = fanouts_pinned.data_ptr<int64_t>();
  for (size_t i = 0; i < fanouts.size(); i++) {
    fanouts_pinned_ptr[i] =
        fanouts[i] >= 0 ? fanouts[i] : std::numeric_limits<int64_t>::max();
  }
  // Finally, copy the adjusted fanout values to the device memory.
  auto fanouts_device = allocator.AllocateStorage<int64_t>(fanouts.size());
sangwzh's avatar
sangwzh committed
246
  CUDA_CALL(hipMemcpyAsync(
247
      fanouts_device.get(), fanouts_pinned_ptr,
sangwzh's avatar
sangwzh committed
248
      sizeof(int64_t) * fanouts.size(), hipMemcpyHostToDevice,
249
      cuda::GetCurrentStream()));
250
  auto in_degree_and_sliced_indptr = SliceCSCIndptr(indptr, seeds);
251
  auto in_degree = std::get<0>(in_degree_and_sliced_indptr);
252
  auto sliced_indptr = std::get<1>(in_degree_and_sliced_indptr);
253
254
255
256
257
258
259
260
261
  auto max_in_degree = torch::empty(
      1,
      c10::TensorOptions().dtype(in_degree.scalar_type()).pinned_memory(true));
  AT_DISPATCH_INDEX_TYPES(
      indptr.scalar_type(), "SampleNeighborsMaxInDegree", ([&] {
        CUB_CALL(
            DeviceReduce::Max, in_degree.data_ptr<index_t>(),
            max_in_degree.data_ptr<index_t>(), num_rows);
      }));
262
263
264
265
  // Protect access to max_in_degree with a CUDAEvent
  at::cuda::CUDAEvent max_in_degree_event;
  max_in_degree_event.record();
  torch::optional<int64_t> num_edges;
266
  torch::Tensor sub_indptr;
267
  if (!seeds.has_value()) {
268
269
270
    num_edges = indices.size(0);
    sub_indptr = indptr;
  }
271
272
  torch::optional<torch::Tensor> sliced_probs_or_mask;
  if (probs_or_mask.has_value()) {
273
    if (seeds.has_value()) {
274
275
      torch::Tensor sliced_probs_or_mask_tensor;
      std::tie(sub_indptr, sliced_probs_or_mask_tensor) = IndexSelectCSCImpl(
276
          in_degree, sliced_indptr, probs_or_mask.value(), seeds.value(),
277
278
279
280
281
282
          indptr.size(0) - 2, num_edges);
      sliced_probs_or_mask = sliced_probs_or_mask_tensor;
      num_edges = sliced_probs_or_mask_tensor.size(0);
    } else {
      sliced_probs_or_mask = probs_or_mask;
    }
283
  }
284
285
  if (fanouts.size() > 1) {
    torch::Tensor sliced_type_per_edge;
286
    if (seeds.has_value()) {
287
      std::tie(sub_indptr, sliced_type_per_edge) = IndexSelectCSCImpl(
288
          in_degree, sliced_indptr, type_per_edge.value(), seeds.value(),
289
290
291
292
          indptr.size(0) - 2, num_edges);
    } else {
      sliced_type_per_edge = type_per_edge.value();
    }
293
294
295
    std::tie(sub_indptr, in_degree, sliced_indptr) = SliceCSCIndptrHetero(
        sub_indptr, sliced_type_per_edge, sliced_indptr, fanouts.size());
    num_rows = sliced_indptr.size(0);
296
    num_edges = sliced_type_per_edge.size(0);
297
298
  }
  // If sub_indptr was not computed in the two code blocks above:
299
  if (seeds.has_value() && !probs_or_mask.has_value() && fanouts.size() <= 1) {
300
    sub_indptr = ExclusiveCumSum(in_degree);
301
  }
302
303
304
305
306
307
308
309
  const continuous_seed random_seed = [&] {
    if (random_seed_tensor.has_value()) {
      return continuous_seed(random_seed_tensor.value(), seed2_contribution);
    } else {
      return continuous_seed{RandomEngine::ThreadLocal()->RandInt(
          static_cast<int64_t>(0), std::numeric_limits<int64_t>::max())};
    }
  }();
310
  auto output_indptr = torch::empty_like(sub_indptr);
311
312
313
  torch::Tensor picked_eids;
  torch::Tensor output_indices;

314
  AT_DISPATCH_INDEX_TYPES(
315
      indptr.scalar_type(), "SampleNeighborsIndptr", ([&] {
316
        using indptr_t = index_t;
317
318
319
320
321
322
323
324
        if (probs_or_mask.has_value()) {  // Count nonzero probs into in_degree.
          GRAPHBOLT_DISPATCH_ALL_TYPES(
              probs_or_mask.value().scalar_type(),
              "SampleNeighborsPositiveProbs", ([&] {
                using probs_t = scalar_t;
                auto is_nonzero = thrust::make_transform_iterator(
                    sliced_probs_or_mask.value().data_ptr<probs_t>(),
                    IsPositive{});
325
326
                CUB_CALL(
                    DeviceSegmentedReduce::Sum, is_nonzero,
327
328
                    in_degree.data_ptr<indptr_t>(), num_rows,
                    sub_indptr.data_ptr<indptr_t>(),
329
                    sub_indptr.data_ptr<indptr_t>() + 1);
330
331
              }));
        }
332
333
334
        thrust::counting_iterator<int64_t> iota(0);
        auto sampled_degree = thrust::make_transform_iterator(
            iota, MinInDegreeFanout<indptr_t>{
335
336
                      in_degree.data_ptr<indptr_t>(), fanouts_device.get(),
                      fanouts.size()});
337

338
339
340
341
        // Compute output_indptr.
        CUB_CALL(
            DeviceScan::ExclusiveSum, sampled_degree,
            output_indptr.data_ptr<indptr_t>(), num_rows + 1);
342
343
344
345

        auto num_sampled_edges =
            cuda::CopyScalar{output_indptr.data_ptr<indptr_t>() + num_rows};

346
347
348
349
350
351
        // This operation is placed after num_sampled_edges copy is started to
        // hide the latency of copy synchronization later.
        auto coo_rows = ExpandIndptrImpl(
            sub_indptr, indices.scalar_type(), torch::nullopt, num_edges);
        num_edges = coo_rows.size(0);

352
353
        // Find the smallest integer type to store the edge id offsets. We synch
        // the CUDAEvent so that the access is safe.
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
        auto compute_num_bits = [&] {
          max_in_degree_event.synchronize();
          return cuda::NumberOfBits(max_in_degree.data_ptr<indptr_t>()[0]);
        };
        if (layer || probs_or_mask.has_value()) {
          const int num_bits = compute_num_bits();
          std::array<int, 4> type_bits = {8, 16, 32, 64};
          const auto type_index =
              std::lower_bound(type_bits.begin(), type_bits.end(), num_bits) -
              type_bits.begin();
          std::array<torch::ScalarType, 5> types = {
              torch::kByte, torch::kInt16, torch::kInt32, torch::kLong,
              torch::kLong};
          auto edge_id_dtype = types[type_index];
          AT_DISPATCH_INTEGRAL_TYPES(
              edge_id_dtype, "SampleNeighborsEdgeIDs", ([&] {
                using edge_id_t = std::make_unsigned_t<scalar_t>;
                TORCH_CHECK(
                    num_bits <= sizeof(edge_id_t) * 8,
                    "Selected edge_id_t must be capable of storing edge_ids.");
                // Using bfloat16 for random numbers works just as reliably as
                // float32 and provides around 30% speedup.
sangwz's avatar
sangwz committed
376
                using rnd_t = hip_bfloat16;
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
                auto randoms =
                    allocator.AllocateStorage<rnd_t>(num_edges.value());
                auto randoms_sorted =
                    allocator.AllocateStorage<rnd_t>(num_edges.value());
                auto edge_id_segments =
                    allocator.AllocateStorage<edge_id_t>(num_edges.value());
                auto sorted_edge_id_segments =
                    allocator.AllocateStorage<edge_id_t>(num_edges.value());
                AT_DISPATCH_INDEX_TYPES(
                    indices.scalar_type(), "SampleNeighborsIndices", ([&] {
                      using indices_t = index_t;
                      auto probs_or_mask_scalar_type = torch::kFloat32;
                      if (probs_or_mask.has_value()) {
                        probs_or_mask_scalar_type =
                            probs_or_mask.value().scalar_type();
                      }
                      GRAPHBOLT_DISPATCH_ALL_TYPES(
                          probs_or_mask_scalar_type, "SampleNeighborsProbs",
                          ([&] {
                            using probs_t = scalar_t;
                            probs_t* sliced_probs_ptr = nullptr;
                            if (sliced_probs_or_mask.has_value()) {
                              sliced_probs_ptr = sliced_probs_or_mask.value()
                                                     .data_ptr<probs_t>();
                            }
                            const indices_t* indices_ptr =
                                layer ? indices.data_ptr<indices_t>() : nullptr;
                            const dim3 block(BLOCK_SIZE);
                            const dim3 grid(
                                (num_edges.value() + BLOCK_SIZE - 1) /
                                BLOCK_SIZE);
                            // Compute row and random number pairs.
                            CUDA_KERNEL_CALL(
                                _ComputeRandoms, grid, block, 0,
                                num_edges.value(),
                                sliced_indptr.data_ptr<indptr_t>(),
                                sub_indptr.data_ptr<indptr_t>(),
                                coo_rows.data_ptr<indices_t>(),
                                sliced_probs_ptr, indices_ptr, random_seed,
                                randoms.get(), edge_id_segments.get());
                          }));
                    }));

                // Sort the random numbers along with edge ids, after
                // sorting the first fanout elements of each row will
                // give us the sampled edges.
423
                CUB_CALL(
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
                    DeviceSegmentedSort::SortPairs, randoms.get(),
                    randoms_sorted.get(), edge_id_segments.get(),
                    sorted_edge_id_segments.get(), num_edges.value(), num_rows,
                    sub_indptr.data_ptr<indptr_t>(),
                    sub_indptr.data_ptr<indptr_t>() + 1);

                picked_eids = torch::empty(
                    static_cast<indptr_t>(num_sampled_edges),
                    sub_indptr.options());

                // Need to sort the sampled edges only when fanouts.size() == 1
                // since multiple fanout sampling case is automatically going to
                // be sorted.
                if (type_per_edge && fanouts.size() == 1) {
                  // Ensuring sort result still ends up in
                  // sorted_edge_id_segments
                  std::swap(edge_id_segments, sorted_edge_id_segments);
                  auto sampled_segment_end_it = thrust::make_transform_iterator(
                      iota,
                      SegmentEndFunc<indptr_t, decltype(sampled_degree)>{
                          sub_indptr.data_ptr<indptr_t>(), sampled_degree});
                  CUB_CALL(
                      DeviceSegmentedSort::SortKeys, edge_id_segments.get(),
                      sorted_edge_id_segments.get(), picked_eids.size(0),
                      num_rows, sub_indptr.data_ptr<indptr_t>(),
sangwz's avatar
sangwz committed
449
450
451
                      sub_indptr.data_ptr<indptr_t>()+1);

                      // sub_indptr.data_ptr<indptr_t>()+1);
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
                }

                auto input_buffer_it = thrust::make_transform_iterator(
                    iota, IteratorFunc<indptr_t, edge_id_t>{
                              sub_indptr.data_ptr<indptr_t>(),
                              sorted_edge_id_segments.get()});
                auto output_buffer_it = thrust::make_transform_iterator(
                    iota, IteratorFuncAddOffset<indptr_t, indptr_t>{
                              output_indptr.data_ptr<indptr_t>(),
                              sliced_indptr.data_ptr<indptr_t>(),
                              picked_eids.data_ptr<indptr_t>()});
                constexpr int64_t max_copy_at_once =
                    std::numeric_limits<int32_t>::max();

                // Copy the sampled edge ids into picked_eids tensor.
                for (int64_t i = 0; i < num_rows; i += max_copy_at_once) {
                  CUB_CALL(
                      DeviceCopy::Batched, input_buffer_it + i,
                      output_buffer_it + i, sampled_degree + i,
                      std::min(num_rows - i, max_copy_at_once));
                }
              }));
        } else {  // Non-weighted neighbor sampling.
          picked_eids = torch::zeros(num_edges.value(), sub_indptr.options());
          const auto sort_needed = type_per_edge && fanouts.size() == 1;
          const auto sliced_indptr_ptr =
              sort_needed ? nullptr : sliced_indptr.data_ptr<indptr_t>();

          const dim3 block(BLOCK_SIZE);
          const dim3 grid(
              (std::min(num_edges.value(), static_cast<int64_t>(1 << 20)) +
               BLOCK_SIZE - 1) /
              BLOCK_SIZE);
          AT_DISPATCH_INDEX_TYPES(
              indices.scalar_type(), "SampleNeighborsIndices", ([&] {
                using indices_t = index_t;
                // Compute row and random number pairs.
                CUDA_KERNEL_CALL(
                    _ComputeRandomsNS, grid, block, 0, num_edges.value(),
                    sliced_indptr_ptr, sub_indptr.data_ptr<indptr_t>(),
                    output_indptr.data_ptr<indptr_t>(),
                    coo_rows.data_ptr<indices_t>(), random_seed.get_seed(0),
                    picked_eids.data_ptr<indptr_t>());
              }));

          picked_eids =
              picked_eids.slice(0, 0, static_cast<indptr_t>(num_sampled_edges));

          // Need to sort the sampled edges only when fanouts.size() == 1
          // since multiple fanout sampling case is automatically going to
          // be sorted.
          if (sort_needed) {
            const int num_bits = compute_num_bits();
            std::array<int, 4> type_bits = {8, 15, 31, 63};
            const auto type_index =
                std::lower_bound(type_bits.begin(), type_bits.end(), num_bits) -
                type_bits.begin();
            std::array<torch::ScalarType, 5> types = {
                torch::kByte, torch::kInt16, torch::kInt32, torch::kLong,
                torch::kLong};
            auto edge_id_dtype = types[type_index];
            AT_DISPATCH_INTEGRAL_TYPES(
                edge_id_dtype, "SampleNeighborsEdgeIDs", ([&] {
                  using edge_id_t = scalar_t;
                  TORCH_CHECK(
                      num_bits <= sizeof(edge_id_t) * 8,
                      "Selected edge_id_t must be capable of storing "
                      "edge_ids.");
                  auto picked_offsets = picked_eids.to(edge_id_dtype);
                  auto sorted_offsets = torch::empty_like(picked_offsets);
                  CUB_CALL(
                      DeviceSegmentedSort::SortKeys,
                      picked_offsets.data_ptr<edge_id_t>(),
                      sorted_offsets.data_ptr<edge_id_t>(), picked_eids.size(0),
                      num_rows, output_indptr.data_ptr<indptr_t>(),
                      output_indptr.data_ptr<indptr_t>() + 1);
                  auto edge_id_offsets = ExpandIndptrImpl(
                      output_indptr, picked_eids.scalar_type(), sliced_indptr,
                      picked_eids.size(0));
                  picked_eids = sorted_offsets.to(picked_eids.scalar_type()) +
                                edge_id_offsets;
                }));
          }
        }
536

537
        output_indices = Gather(indices, picked_eids);
538
      }));
539

540
541
542
543
544
545
546
547
548
  torch::optional<torch::Tensor> output_type_per_edge;
  torch::optional<torch::Tensor> edge_offsets;
  if (type_per_edge && seed_offsets) {
    const int64_t num_etypes =
        edge_type_to_id.has_value() ? edge_type_to_id->size() : 1;
    // If we performed homogenous sampling on hetero graph, we have to look at
    // type_per_edge of sampled edges and determine the offsets of different
    // sampled etypes and convert to fused hetero indptr representation.
    if (fanouts.size() == 1) {
549
      output_type_per_edge = Gather(*type_per_edge, picked_eids);
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
      torch::Tensor output_in_degree, sliced_output_indptr;
      sliced_output_indptr =
          output_indptr.slice(0, 0, output_indptr.size(0) - 1);
      std::tie(output_indptr, output_in_degree, sliced_output_indptr) =
          SliceCSCIndptrHetero(
              output_indptr, output_type_per_edge.value(), sliced_output_indptr,
              num_etypes);
      // We use num_rows to hold num_seeds * num_etypes. So, it needs to be
      // updated when sampling with a single fanout value when the graph is
      // heterogenous.
      num_rows = sliced_output_indptr.size(0);
    }
    // Here, we check what are the dst node types for the given seeds so that
    // we can compute the output indptr space later.
    std::vector<int64_t> etype_id_to_dst_ntype_id(num_etypes);
565
566
567
568
569
570
571
    // Here, we check what are the src node types for the given seeds so that
    // we can subtract source node offset from indices later.
    auto etype_id_to_src_ntype_id = torch::empty(
        2 * num_etypes,
        c10::TensorOptions().dtype(torch::kLong).pinned_memory(true));
    auto etype_id_to_src_ntype_id_ptr =
        etype_id_to_src_ntype_id.data_ptr<int64_t>();
572
573
574
    for (auto& etype_and_id : edge_type_to_id.value()) {
      auto etype = etype_and_id.key();
      auto id = etype_and_id.value();
575
      auto [src_type, dst_type] = utils::parse_src_dst_ntype_from_etype(etype);
576
      etype_id_to_dst_ntype_id[id] = node_type_to_id->at(dst_type);
577
578
579
      etype_id_to_src_ntype_id_ptr[2 * id] =
          etype_id_to_src_ntype_id_ptr[2 * id + 1] =
              node_type_to_id->at(src_type);
580
    }
581
582
583
584
585
586
587
588
589
590
591
    auto indices_offsets_device = torch::empty(
        etype_id_to_src_ntype_id.size(0),
        output_indices.options().dtype(torch::kLong));
    AT_DISPATCH_INDEX_TYPES(
        node_type_offset->scalar_type(), "SampleNeighborsNodeTypeOffset", ([&] {
          THRUST_CALL(
              gather, etype_id_to_src_ntype_id_ptr,
              etype_id_to_src_ntype_id_ptr + etype_id_to_src_ntype_id.size(0),
              node_type_offset->data_ptr<index_t>(),
              indices_offsets_device.data_ptr<int64_t>());
        }));
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
    // For each edge type, we compute the start and end offsets to index into
    // indptr to form the final output_indptr.
    auto indptr_offsets = torch::empty(
        num_etypes * 2,
        c10::TensorOptions().dtype(torch::kLong).pinned_memory(true));
    auto indptr_offsets_ptr = indptr_offsets.data_ptr<int64_t>();
    // We compute the indptr offsets here, right now, output_indptr is of size
    // # seeds * num_etypes + 1. We can simply take slices to get correct output
    // indptr. The final output_indptr is same as current indptr except that
    // some intermediate values are removed to change the node ids space from
    // all of the seed vertices to the node id space of the dst node type of
    // each edge type.
    for (int i = 0; i < num_etypes; i++) {
      indptr_offsets_ptr[2 * i] = num_rows / num_etypes * i +
                                  seed_offsets->at(etype_id_to_dst_ntype_id[i]);
      indptr_offsets_ptr[2 * i + 1] =
          num_rows / num_etypes * i +
          seed_offsets->at(etype_id_to_dst_ntype_id[i] + 1);
    }
    auto permutation = torch::arange(
        0, num_rows * num_etypes, num_etypes, output_indptr.options());
    permutation =
        permutation.remainder(num_rows) + permutation.div(num_rows, "floor");
    // This permutation, when applied sorts the sampled edges with respect to
    // edge types.
    auto [output_in_degree, sliced_output_indptr] =
        SliceCSCIndptr(output_indptr, permutation);
    std::tie(output_indptr, picked_eids) = IndexSelectCSCImpl(
        output_in_degree, sliced_output_indptr, picked_eids, permutation,
        num_rows - 1, picked_eids.size(0));
    edge_offsets = torch::empty(
        num_etypes * 2, c10::TensorOptions()
                            .dtype(output_indptr.scalar_type())
                            .pinned_memory(true));
626
627
    auto edge_offsets_device =
        torch::empty(num_etypes * 2, output_indptr.options());
628
629
630
    at::cuda::CUDAEvent edge_offsets_event;
    AT_DISPATCH_INDEX_TYPES(
        indptr.scalar_type(), "SampleNeighborsEdgeOffsets", ([&] {
631
632
633
634
635
636
637
638
          auto edge_offsets_pinned_device_pair =
              thrust::make_transform_output_iterator(
                  thrust::make_zip_iterator(
                      edge_offsets->data_ptr<index_t>(),
                      edge_offsets_device.data_ptr<index_t>()),
                  [=] __device__(index_t x) {
                    return thrust::make_tuple(x, x);
                  });
639
640
641
642
          THRUST_CALL(
              gather, indptr_offsets_ptr,
              indptr_offsets_ptr + indptr_offsets.size(0),
              output_indptr.data_ptr<index_t>(),
643
              edge_offsets_pinned_device_pair);
644
645
        }));
    edge_offsets_event.record();
646
647
648
    auto indices_offset_subtract = ExpandIndptrImpl(
        edge_offsets_device, indices.scalar_type(), indices_offsets_device,
        output_indices.size(0));
649
650
651
652
    // The output_indices is permuted here.
    std::tie(output_indptr, output_indices) = IndexSelectCSCImpl(
        output_in_degree, sliced_output_indptr, output_indices, permutation,
        num_rows - 1, output_indices.size(0));
653
654
655
656
657
    output_indices -= indices_offset_subtract;
    auto output_indptr_offsets = torch::empty(
        num_etypes * 2,
        c10::TensorOptions().dtype(torch::kLong).pinned_memory(true));
    auto output_indptr_offsets_ptr = output_indptr_offsets.data_ptr<int64_t>();
658
659
660
    std::vector<torch::Tensor> indptr_list;
    for (int i = 0; i < num_etypes; i++) {
      indptr_list.push_back(output_indptr.slice(
661
662
663
664
665
          0, indptr_offsets_ptr[2 * i], indptr_offsets_ptr[2 * i + 1] + 1));
      output_indptr_offsets_ptr[2 * i] =
          i == 0 ? 0 : output_indptr_offsets_ptr[2 * i - 1];
      output_indptr_offsets_ptr[2 * i + 1] =
          output_indptr_offsets_ptr[2 * i] + indptr_list.back().size(0);
666
    }
667
668
669
670
671
672
    auto output_indptr_offsets_device = torch::empty(
        output_indptr_offsets.size(0),
        output_indptr.options().dtype(torch::kLong));
    THRUST_CALL(
        copy_n, output_indptr_offsets_ptr, output_indptr_offsets.size(0),
        output_indptr_offsets_device.data_ptr<int64_t>());
673
674
675
    // We form the final output indptr by concatenating pieces for different
    // edge types.
    output_indptr = torch::cat(indptr_list);
676
677
678
679
    auto indptr_offset_subtract = ExpandIndptrImpl(
        output_indptr_offsets_device, indptr.scalar_type(), edge_offsets_device,
        output_indptr.size(0));
    output_indptr -= indptr_offset_subtract;
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
    edge_offsets_event.synchronize();
    // We read the edge_offsets here, they are in pairs but we don't need it to
    // be in pairs. So we remove the duplicate information from it and turn it
    // into a real offsets array.
    AT_DISPATCH_INDEX_TYPES(
        indptr.scalar_type(), "SampleNeighborsEdgeOffsetsCheck", ([&] {
          auto edge_offsets_ptr = edge_offsets->data_ptr<index_t>();
          TORCH_CHECK(edge_offsets_ptr[0] == 0, "edge_offsets is incorrect.");
          for (int i = 1; i < num_etypes; i++) {
            TORCH_CHECK(
                edge_offsets_ptr[2 * i - 1] == edge_offsets_ptr[2 * i],
                "edge_offsets is incorrect.");
          }
          TORCH_CHECK(
              edge_offsets_ptr[2 * num_etypes - 1] == picked_eids.size(0),
              "edge_offsets is incorrect.");
          for (int i = 0; i < num_etypes; i++) {
            edge_offsets_ptr[i + 1] = edge_offsets_ptr[2 * i + 1];
          }
        }));
    edge_offsets = edge_offsets->slice(0, 0, num_etypes + 1);
  } else {
    // Convert output_indptr back to homo by discarding intermediate offsets.
    output_indptr =
        output_indptr.slice(0, 0, output_indptr.size(0), fanouts.size());
    if (type_per_edge)
706
      output_type_per_edge = Gather(*type_per_edge, picked_eids);
707
  }
708
709
710
711
712

  torch::optional<torch::Tensor> subgraph_reverse_edge_ids = torch::nullopt;
  if (return_eids) subgraph_reverse_edge_ids = std::move(picked_eids);

  return c10::make_intrusive<sampling::FusedSampledSubgraph>(
713
714
      output_indptr, output_indices, seeds, torch::nullopt,
      subgraph_reverse_edge_ids, output_type_per_edge, edge_offsets);
715
716
717
718
}

}  //  namespace ops
}  //  namespace graphbolt