test_gnn.py 8.12 KB
Newer Older
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
import dgl
import torch
import torch.nn.functional as F

from dgl import DGLGraph
from dgllife.model.gnn import *

def test_graph1():
    """Graph with node features."""
    g = DGLGraph([(0, 1), (0, 2), (1, 2)])
    return g, torch.arange(g.number_of_nodes()).float().reshape(-1, 1)

def test_graph2():
    """Batched graph with node features."""
    g1 = DGLGraph([(0, 1), (0, 2), (1, 2)])
    g2 = DGLGraph([(0, 1), (1, 2), (1, 3), (1, 4)])
    bg = dgl.batch([g1, g2])
    return bg, torch.arange(bg.number_of_nodes()).float().reshape(-1, 1)

def test_graph3():
    """Graph with node and edge features."""
    g = DGLGraph([(0, 1), (0, 2), (1, 2)])
    return g, torch.arange(g.number_of_nodes()).float().reshape(-1, 1), \
           torch.arange(2 * g.number_of_edges()).float().reshape(-1, 2)

def test_graph4():
    """Batched graph with node and edge features."""
    g1 = DGLGraph([(0, 1), (0, 2), (1, 2)])
    g2 = DGLGraph([(0, 1), (1, 2), (1, 3), (1, 4)])
    bg = dgl.batch([g1, g2])
    return bg, torch.arange(bg.number_of_nodes()).float().reshape(-1, 1), \
           torch.arange(2 * bg.number_of_edges()).float().reshape(-1, 2)

def test_graph5():
    """Graph with node types and edge distances."""
    g1 = DGLGraph([(0, 1), (0, 2), (1, 2)])
    return g1, torch.LongTensor([0, 1, 0]), torch.randn(3, 1)

def test_graph6():
    """Batched graph with node types and edge distances."""
    g1 = DGLGraph([(0, 1), (0, 2), (1, 2)])
    g2 = DGLGraph([(0, 1), (1, 2), (1, 3), (1, 4)])
    bg = dgl.batch([g1, g2])
    return bg, torch.LongTensor([0, 1, 0, 2, 0, 3, 4, 4]), torch.randn(7, 1)

def test_gcn():
    if torch.cuda.is_available():
        device = torch.device('cuda:0')
    else:
        device = torch.device('cpu')

    g, node_feats = test_graph1()
    g, node_feats = g.to(device), node_feats.to(device)
    bg, batch_node_feats = test_graph2()
    bg, batch_node_feats = bg.to(device), batch_node_feats.to(device)

    # Test default setting
    gnn = GCN(in_feats=1).to(device)
    assert gnn(g, node_feats).shape == torch.Size([3, 64])
    assert gnn(bg, batch_node_feats).shape == torch.Size([8, 64])

    # Test configured setting
    gnn = GCN(in_feats=1,
              hidden_feats=[1, 1],
              activation=[F.relu, F.relu],
              residual=[True, True],
              batchnorm=[True, True],
              dropout=[0.2, 0.2]).to(device)
    assert gnn(g, node_feats).shape == torch.Size([3, 1])
    assert gnn(bg, batch_node_feats).shape == torch.Size([8, 1])

def test_gat():
    if torch.cuda.is_available():
        device = torch.device('cuda:0')
    else:
        device = torch.device('cpu')

    g, node_feats = test_graph1()
    g, node_feats = g.to(device), node_feats.to(device)
    bg, batch_node_feats = test_graph2()
    bg, batch_node_feats = bg.to(device), batch_node_feats.to(device)

    # Test default setting
    gnn = GAT(in_feats=1)
    assert gnn(g, node_feats).shape == torch.Size([3, 32])
    assert gnn(bg, batch_node_feats).shape == torch.Size([8, 32])

    # Test configured setting
    gnn = GAT(in_feats=1,
              hidden_feats=[1, 1],
              num_heads=[2, 3],
              feat_drops=[0.1, 0.1],
              attn_drops=[0.1, 0.1],
              alphas=[0.2, 0.2],
              residuals=[True, True],
              agg_modes=['flatten', 'mean'],
              activations=[None, F.elu]).to(device)
    assert gnn(g, node_feats).shape == torch.Size([3, 1])
    assert gnn(bg, batch_node_feats).shape == torch.Size([8, 1])

    gnn = GAT(in_feats=1,
              hidden_feats=[1, 1],
              num_heads=[2, 3],
              feat_drops=[0.1, 0.1],
              attn_drops=[0.1, 0.1],
              alphas=[0.2, 0.2],
              residuals=[True, True],
              agg_modes=['mean', 'flatten'],
              activations=[None, F.elu]).to(device)
    assert gnn(g, node_feats).shape == torch.Size([3, 3])
    assert gnn(bg, batch_node_feats).shape == torch.Size([8, 3])

def test_attentive_fp_gnn():
    if torch.cuda.is_available():
        device = torch.device('cuda:0')
    else:
        device = torch.device('cpu')

    g, node_feats, edge_feats = test_graph3()
    g, node_feats, edge_feats = g.to(device), node_feats.to(device), edge_feats.to(device)
    bg, batch_node_feats, batch_edge_feats = test_graph4()
    bg, batch_node_feats, batch_edge_feats = bg.to(device), batch_node_feats.to(device), \
                                             batch_edge_feats.to(device)

    # Test AttentiveFPGNN
    gnn = AttentiveFPGNN(node_feat_size=1,
                         edge_feat_size=2,
                         num_layers=1,
                         graph_feat_size=1,
                         dropout=0.).to(device)
    assert gnn(g, node_feats, edge_feats).shape == torch.Size([3, 1])
    assert gnn(bg, batch_node_feats, batch_edge_feats).shape == torch.Size([8, 1])

def test_schnet_gnn():
    if torch.cuda.is_available():
        device = torch.device('cuda:0')
    else:
        device = torch.device('cpu')

    g, node_types, edge_dists = test_graph5()
    g, node_types, edge_dists = g.to(device), node_types.to(device), edge_dists.to(device)
    bg, batch_node_types, batch_edge_dists = test_graph6()
    bg, batch_node_types, batch_edge_dists = bg.to(device), batch_node_types.to(device), \
                                             batch_edge_dists.to(device)

    # Test default setting
    gnn = SchNetGNN().to(device)
    assert gnn(g, node_types, edge_dists).shape == torch.Size([3, 64])
    assert gnn(bg, batch_node_types, batch_edge_dists).shape == torch.Size([8, 64])

    # Test configured setting
    gnn = SchNetGNN(num_node_types=5,
                    node_feats=2,
                    hidden_feats=[3],
                    cutoff=0.3).to(device)
    assert gnn(g, node_types, edge_dists).shape == torch.Size([3, 2])
    assert gnn(bg, batch_node_types, batch_edge_dists).shape == torch.Size([8, 2])

def test_mgcn_gnn():
    if torch.cuda.is_available():
        device = torch.device('cuda:0')
    else:
        device = torch.device('cpu')

    g, node_types, edge_dists = test_graph5()
    g, node_types, edge_dists = g.to(device), node_types.to(device), edge_dists.to(device)
    bg, batch_node_types, batch_edge_dists = test_graph6()
    bg, batch_node_types, batch_edge_dists = bg.to(device), batch_node_types.to(device), \
                                             batch_edge_dists.to(device)

    # Test default setting
    gnn = MGCNGNN().to(device)
    assert gnn(g, node_types, edge_dists).shape == torch.Size([3, 512])
    assert gnn(bg, batch_node_types, batch_edge_dists).shape == torch.Size([8, 512])

    # Test configured setting
    gnn = MGCNGNN(feats=2,
                  n_layers=2,
                  num_node_types=5,
                  num_edge_types=150,
                  cutoff=0.3).to(device)
    assert gnn(g, node_types, edge_dists).shape == torch.Size([3, 6])
    assert gnn(bg, batch_node_types, batch_edge_dists).shape == torch.Size([8, 6])

def test_mpnn_gnn():
    if torch.cuda.is_available():
        device = torch.device('cuda:0')
    else:
        device = torch.device('cpu')

    g, node_feats, edge_feats = test_graph3()
    g, node_feats, edge_feats = g.to(device), node_feats.to(device), edge_feats.to(device)
    bg, batch_node_feats, batch_edge_feats = test_graph4()
    bg, batch_node_feats, batch_edge_feats = bg.to(device), batch_node_feats.to(device), \
                                             batch_edge_feats.to(device)

    # Test default setting
    gnn = MPNNGNN(node_in_feats=1,
                  edge_in_feats=2)
    assert gnn(g, node_feats, edge_feats).shape == torch.Size([3, 64])
    assert gnn(bg, batch_node_feats, batch_edge_feats).shape == torch.Size([8, 64])

    # Test configured setting
    gnn = MPNNGNN(node_in_feats=1,
                  edge_in_feats=2,
                  node_out_feats=2,
                  edge_hidden_feats=2,
                  num_step_message_passing=2).to(device)
    assert gnn(g, node_feats, edge_feats).shape == torch.Size([3, 2])
    assert gnn(bg, batch_node_feats, batch_edge_feats).shape == torch.Size([8, 2])

if __name__ == '__main__':
    test_gcn()
    test_gat()
    test_attentive_fp_gnn()
    test_schnet_gnn()
    test_mgcn_gnn()
    test_mpnn_gnn()