eval.py 6.79 KB
Newer Older
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
import os
import pickle
import shutil
import torch

from dgllife.model import DGMG, load_pretrained

from utils import MoleculeDataset, set_random_seed, download_data,\
    mkdir_p, summarize_molecules, get_unique_smiles, get_novel_smiles

def generate_and_save(log_dir, num_samples, max_num_steps, model):
    with open(os.path.join(log_dir, 'generated_smiles.txt'), 'w') as f:
        for i in range(num_samples):
            with torch.no_grad():
                s = model(rdkit_mol=True, max_num_steps=max_num_steps)
            f.write(s + '\n')

def prepare_for_evaluation(rank, args):
    worker_seed = args['seed'] + rank * 10000
    set_random_seed(worker_seed)
    torch.set_num_threads(1)

    # Setup dataset and data loader
    dataset = MoleculeDataset(args['dataset'], subset_id=rank, n_subsets=args['num_processes'])

    # Initialize model
    if not args['pretrained']:
        model = DGMG(atom_types=dataset.atom_types,
                     bond_types=dataset.bond_types,
                     node_hidden_size=args['node_hidden_size'],
                     num_prop_rounds=args['num_propagation_rounds'], dropout=args['dropout'])
        model.load_state_dict(torch.load(args['model_path'])['model_state_dict'])
    else:
        model = load_pretrained('_'.join(['DGMG', args['dataset'], args['order']]), log=False)
    model.eval()

    worker_num_samples = args['num_samples'] // args['num_processes']
    if rank == args['num_processes'] - 1:
        worker_num_samples += args['num_samples'] % args['num_processes']

    worker_log_dir = os.path.join(args['log_dir'], str(rank))
    mkdir_p(worker_log_dir, log=False)
    generate_and_save(worker_log_dir, worker_num_samples, args['max_num_steps'], model)

def remove_worker_tmp_dir(args):
    for rank in range(args['num_processes']):
        worker_path = os.path.join(args['log_dir'], str(rank))
        try:
            shutil.rmtree(worker_path)
        except OSError:
            print('Directory {} does not exist!'.format(worker_path))

def aggregate_and_evaluate(args):
    print('Merging generated SMILES into a single file...')
    smiles = []
    for rank in range(args['num_processes']):
        with open(os.path.join(args['log_dir'], str(rank), 'generated_smiles.txt'), 'r') as f:
            rank_smiles = f.read().splitlines()
        smiles.extend(rank_smiles)

    with open(os.path.join(args['log_dir'], 'generated_smiles.txt'), 'w') as f:
        for s in smiles:
            f.write(s + '\n')

    print('Removing temporary dirs...')
    remove_worker_tmp_dir(args)

    # Summarize training molecules
    print('Summarizing training molecules...')
    train_file = '_'.join([args['dataset'], 'DGMG_train.txt'])
    if not os.path.exists(train_file):
        download_data(args['dataset'], train_file)
    with open(train_file, 'r') as f:
        train_smiles = f.read().splitlines()
    train_summary = summarize_molecules(train_smiles, args['num_processes'])
    with open(os.path.join(args['log_dir'], 'train_summary.pickle'), 'wb') as f:
        pickle.dump(train_summary, f)

    # Summarize generated molecules
    print('Summarizing generated molecules...')
    generation_summary = summarize_molecules(smiles, args['num_processes'])
    with open(os.path.join(args['log_dir'], 'generation_summary.pickle'), 'wb') as f:
        pickle.dump(generation_summary, f)

    # Stats computation
    print('Preparing generation statistics...')
    valid_generated_smiles = generation_summary['smile']
    unique_generated_smiles = get_unique_smiles(valid_generated_smiles)
    unique_train_smiles = get_unique_smiles(train_summary['smile'])
    novel_generated_smiles = get_novel_smiles(unique_generated_smiles, unique_train_smiles)
    with open(os.path.join(args['log_dir'], 'generation_stats.txt'), 'w') as f:
        f.write('Total number of generated molecules: {:d}\n'.format(len(smiles)))
        f.write('Validity among all: {:.4f}\n'.format(
            len(valid_generated_smiles) / len(smiles)))
        f.write('Uniqueness among valid ones: {:.4f}\n'.format(
            len(unique_generated_smiles) / len(valid_generated_smiles)))
        f.write('Novelty among unique ones: {:.4f}\n'.format(
            len(novel_generated_smiles) / len(unique_generated_smiles)))

if __name__ == '__main__':
    import argparse
    import datetime
    import time
    from rdkit import rdBase

    from utils import setup

    parser = argparse.ArgumentParser(description='Evaluating DGMG for molecule generation',
                                     formatter_class=argparse.ArgumentDefaultsHelpFormatter)

    # configure
    parser.add_argument('-s', '--seed', type=int, default=0, help='random seed')

    # dataset and setting
    parser.add_argument('-d', '--dataset',
                        help='dataset to use')
    parser.add_argument('-o', '--order', choices=['random', 'canonical'],
                        help='order to generate graphs, used for naming evaluation directory')

    # log
    parser.add_argument('-l', '--log-dir', default='./eval_results',
                        help='folder to save evaluation results')

    parser.add_argument('-p', '--model-path', type=str, default=None,
                        help='path to saved model')
    parser.add_argument('-pr', '--pretrained', action='store_true',
                        help='Whether to use a pre-trained model')
    parser.add_argument('-ns', '--num-samples', type=int, default=100000,
                        help='Number of molecules to generate')
    parser.add_argument('-mn', '--max-num-steps', type=int, default=400,
                        help='Max number of steps allowed in generated molecules to ensure termination')

    # multi-process
    parser.add_argument('-np', '--num-processes', type=int, default=32,
                        help='number of processes to use')
    parser.add_argument('-gt', '--generation-time', type=int, default=600,
                        help='max time (seconds) allowed for generation with multiprocess')

    args = parser.parse_args()
    args = setup(args, train=False)
    rdBase.DisableLog('rdApp.error')

    t1 = time.time()
    if args['num_processes'] == 1:
        prepare_for_evaluation(0, args)
    else:
        import multiprocessing as mp

        procs = []
        for rank in range(args['num_processes']):
            p = mp.Process(target=prepare_for_evaluation, args=(rank, args,))
            procs.append(p)
            p.start()

        while time.time() - t1 <= args['generation_time']:
            if any(p.is_alive() for p in procs):
                time.sleep(5)
            else:
                break
        else:
            print('Timeout, killing all processes.')
            for p in procs:
                p.terminate()
                p.join()

    t2 = time.time()
    print('It took {} for generation.'.format(
        datetime.timedelta(seconds=t2 - t1)))
    aggregate_and_evaluate(args)