quickstart.ipynb 38.1 KB
Newer Older
1
2
3
4
5
6
7
{
  "nbformat": 4,
  "nbformat_minor": 0,
  "metadata": {
    "colab": {
      "provenance": [],
      "private_outputs": true,
8
      "toc_visible": true
9
10
11
12
13
14
15
16
    },
    "kernelspec": {
      "name": "python3",
      "display_name": "Python 3"
    },
    "language_info": {
      "name": "python"
    },
17
    "gpuClass": "standard"
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
  },
  "cells": [
    {
      "cell_type": "markdown",
      "source": [
        "# Quickstart\n",
        "\n",
        "The tutorial provides a quick walkthrough of the classes and operators provided by the `dgl.sparse` package.\n",
        "\n",
        "[![Open In Colab](https://colab.research.google.com/assets/colab-badge.svg)](https://colab.research.google.com/github/dmlc/dgl/blob/master/notebooks/sparse/quickstart.ipynb) [![GitHub](https://img.shields.io/badge/-View%20on%20GitHub-181717?logo=github&logoColor=ffffff)](https://github.com/dmlc/dgl/blob/master/notebooks/sparse/quickstart.ipynb)"
      ],
      "metadata": {
        "id": "E0DAKDMuWz7I"
      }
    },
    {
      "cell_type": "code",
      "source": [
Minjie Wang's avatar
Minjie Wang committed
36
        "# Install the required packages.\n",
37
38
39
40
41
42
43
        "\n",
        "import os\n",
        "import torch\n",
        "os.environ['TORCH'] = torch.__version__\n",
        "os.environ['DGLBACKEND'] = \"pytorch\"\n",
        "\n",
        "# TODO(Steve): change to stable version.\n",
Minjie Wang's avatar
Minjie Wang committed
44
45
        "# Uncomment below to install the required packages.\n",
        "#!pip install --pre dgl -f https://data.dgl.ai/wheels-test/repo.html > /dev/null\n",
46
47
48
49
50
51
        "\n",
        "try:\n",
        "    import dgl.sparse as dglsp\n",
        "    installed = True\n",
        "except ImportError:\n",
        "    installed = False\n",
52
        "print(\"DGL installed!\" if installed else \"DGL not found!\")"
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
      ],
      "metadata": {
        "id": "19UZd7wyWzpT"
      },
      "execution_count": null,
      "outputs": []
    },
    {
      "cell_type": "markdown",
      "source": [
        "## Sparse Matrix\n",
        "\n",
        "The core abstraction of DGL's sparse package is the `SparseMatrix` class. Compared with other sparse matrix libraries (such as `scipy.sparse` and `torch.sparse`), DGL's `SparseMatrix` is specialized for the deep learning workloads on structure data (e.g., Graph Neural Networks), with the following features:\n",
        "\n",
        "* **Auto sparse format.** Don't bother choosing between different sparse formats. There is only one `SparseMatrix` and it will select the best format for the operation to be performed.\n",
        "* **Non-zero elements can be scalar or vector.** Easy for modeling relations (e.g., edges) by vector representation.\n",
        "* **Fully PyTorch compatible.** The package is built upon PyTorch and is natively compatible with other tools in the PyTorch ecosystem.\n"
      ],
      "metadata": {
        "id": "GsWoAGC4RpHw"
      }
    },
    {
      "cell_type": "markdown",
      "source": [
78
        "### Creating a DGL Sparse Matrix\n",
79
        "\n",
80
        "The simplest way to create a sparse matrix is using the `spmatrix` API by providing the indices of the non-zero elements. The indices are stored in a tensor of shape `(2, nnz)`, where the `i`-th non-zero element is stored at position `(indices[0][i], indices[1][i])`. The code below creates a 3x3 sparse matrix.\n"
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
      ],
      "metadata": {
        "id": "_q4HYodcWenB"
      }
    },
    {
      "cell_type": "code",
      "execution_count": null,
      "metadata": {
        "id": "h-ryVEs1PuIP"
      },
      "outputs": [],
      "source": [
        "import torch\n",
        "import dgl.sparse as dglsp\n",
        "\n",
97
98
99
100
        "i = torch.tensor([[1, 1, 2],\n",
        "                  [0, 2, 0]])\n",
        "A = dglsp.spmatrix(i)  # 1.0 is default value for nnz elements.\n",
        "\n",
101
102
103
104
105
106
107
108
109
        "print(A)\n",
        "print(\"\")\n",
        "print(\"In dense format:\")\n",
        "print(A.to_dense())"
      ]
    },
    {
      "cell_type": "markdown",
      "source": [
110
        "If not specified, the shape is inferred automatically from the indices but you can specify it explicitly too."
111
112
113
114
115
116
117
118
      ],
      "metadata": {
        "id": "W1JJg-eZ7K3t"
      }
    },
    {
      "cell_type": "code",
      "source": [
119
120
        "i = torch.tensor([[0, 0, 1],\n",
        "                  [0, 2, 0]])\n",
121
        "\n",
122
        "A1 = dglsp.spmatrix(i)\n",
123
124
125
126
        "print(f\"Implicit Shape: {A1.shape}\")\n",
        "print(A1.to_dense())\n",
        "print(\"\")\n",
        "\n",
127
        "A2 = dglsp.spmatrix(i, shape=(3, 3))\n",
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
        "print(f\"Explicit Shape: {A2.shape}\")\n",
        "print(A2.to_dense())"
      ],
      "metadata": {
        "id": "80NNSQfd7L5V"
      },
      "execution_count": null,
      "outputs": []
    },
    {
      "cell_type": "markdown",
      "source": [
        "Both scalar values and vector values can be set for nnz elements in Sparse Matrix."
      ],
      "metadata": {
        "id": "zdNgUf0ShfCe"
      }
    },
    {
      "cell_type": "code",
      "source": [
149
150
        "i = torch.tensor([[1, 1, 2],\n",
        "                  [0, 2, 0]])\n",
151
152
153
154
155
156
        "# The length of the value should match the nnz elements represented by the\n",
        "# sparse matrix format.\n",
        "scalar_val = torch.tensor([1., 2., 3.])\n",
        "vector_val = torch.tensor([[1., 1.], [2., 2.], [3., 3.]])\n",
        "\n",
        "print(\"-----Scalar Values-----\")\n",
157
        "A = dglsp.spmatrix(i, scalar_val)\n",
158
159
160
161
162
163
164
        "print(A)\n",
        "print(\"\")\n",
        "print(\"In dense format:\")\n",
        "print(A.to_dense())\n",
        "print(\"\")\n",
        "\n",
        "print(\"-----Vector Values-----\")\n",
165
        "A = dglsp.spmatrix(i, vector_val)\n",
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
        "print(A)\n",
        "print(\"\")\n",
        "print(\"In dense format:\")\n",
        "print(A.to_dense())"
      ],
      "metadata": {
        "id": "buE9ZkKvhp1f"
      },
      "execution_count": null,
      "outputs": []
    },
    {
      "cell_type": "markdown",
      "source": [
        "*Duplicated indices*"
      ],
      "metadata": {
        "id": "7ufTCDAVsrmP"
      }
    },
    {
      "cell_type": "code",
      "source": [
189
190
        "i = torch.tensor([[0, 0, 0, 1],\n",
        "                  [0, 2, 2, 0]])\n",
191
        "val = torch.tensor([1., 2., 3., 4])\n",
192
        "A = dglsp.spmatrix(i, val)\n",
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
        "print(A)\n",
        "print(f\"Whether A contains duplicate indices: {A.has_duplicate()}\")\n",
        "print(\"\")\n",
        "\n",
        "B = A.coalesce()\n",
        "print(B)\n",
        "print(f\"Whether B contains duplicate indices: {B.has_duplicate()}\")"
      ],
      "metadata": {
        "id": "ilSAlFLOs0o8"
      },
      "execution_count": null,
      "outputs": []
    },
    {
      "cell_type": "markdown",
      "source": [
210
211
212
        "**val_like**\n",
        "\n",
        "You can create a new sparse matrix by retaining the non-zero indices of a given sparse matrix but with different non-zero values."
213
214
      ],
      "metadata": {
215
        "id": "ZJ09qM5NaxuI"
216
217
218
219
220
      }
    },
    {
      "cell_type": "code",
      "source": [
221
222
223
224
        "i = torch.tensor([[1, 1, 2],\n",
        "                  [0, 2, 0]])\n",
        "val = torch.tensor([1., 2., 3.])\n",
        "A = dglsp.spmatrix(i, val)\n",
225
        "\n",
226
227
228
        "new_val = torch.tensor([4., 5., 6.])\n",
        "B = dglsp.val_like(A, new_val)\n",
        "print(B)"
229
230
      ],
      "metadata": {
231
        "id": "UB3lKJVBbsUD"
232
233
234
235
236
237
238
      },
      "execution_count": null,
      "outputs": []
    },
    {
      "cell_type": "markdown",
      "source": [
239
        "**Create a sparse matrix from various sparse formats**\n",
240
        "\n",
241
242
243
        "*   `from_coo()`: Create a sparse matrix from [COO](https://en.wikipedia.org/wiki/Sparse_matrix#Coordinate_list_(COO)) format.\n",
        "*   `from_csr()`: Create a sparse matrix from [CSR](https://en.wikipedia.org/wiki/Sparse_matrix#Compressed_sparse_row_(CSR,_CRS_or_Yale_format)) format.\n",
        "*   `from_csc()`: Create a sparse matrix from [CSC](https://en.wikipedia.org/wiki/Sparse_matrix#Compressed_sparse_column_(CSC_or_CCS)) format."
244
245
      ],
      "metadata": {
246
        "id": "nWjBSFDBXDPJ"
247
248
249
250
251
      }
    },
    {
      "cell_type": "code",
      "source": [
252
253
        "row = torch.tensor([0, 1, 2, 2, 2])\n",
        "col = torch.tensor([1, 2, 0, 1, 2])\n",
254
        "\n",
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
        "print(\"-----Create from COO format-----\")\n",
        "A = dglsp.from_coo(row, col)\n",
        "print(A)\n",
        "print(\"\")\n",
        "print(\"In dense format:\")\n",
        "print(A.to_dense())\n",
        "print(\"\")\n",
        "\n",
        "indptr = torch.tensor([0, 1, 2, 5])\n",
        "indices = torch.tensor([1, 2, 0, 1, 2])\n",
        "\n",
        "print(\"-----Create from CSR format-----\")\n",
        "A = dglsp.from_csr(indptr, indices)\n",
        "print(A)\n",
        "print(\"\")\n",
        "print(\"In dense format:\")\n",
        "print(A.to_dense())\n",
        "print(\"\")\n",
        "\n",
        "print(\"-----Create from CSC format-----\")\n",
        "B = dglsp.from_csc(indptr, indices)\n",
        "print(B)\n",
        "print(\"\")\n",
        "print(\"In dense format:\")\n",
        "print(B.to_dense())"
280
281
      ],
      "metadata": {
282
        "id": "3puXyMFsvdlj"
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
      },
      "execution_count": null,
      "outputs": []
    },
    {
      "cell_type": "markdown",
      "source": [
        "### Attributes and methods of a DGL Sparse Matrix"
      ],
      "metadata": {
        "id": "nd4hJ9ysd4St"
      }
    },
    {
      "cell_type": "code",
      "source": [
299
300
        "i = torch.tensor([[0, 1, 1, 2],\n",
        "                  [1, 0, 2, 0]])\n",
301
        "val = torch.tensor([1., 2., 3., 4.])\n",
302
        "A = dglsp.spmatrix(i, val)\n",
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
        "\n",
        "print(f\"Shape of sparse matrix: {A.shape}\")\n",
        "print(f\"The number of nonzero elements of sparse matrix: {A.nnz}\")\n",
        "print(f\"Datatype of sparse matrix: {A.dtype}\")\n",
        "print(f\"Device sparse matrix is stored on: {A.device}\")\n",
        "print(f\"Get the values of the nonzero elements: {A.val}\")\n",
        "print(f\"Get the row indices of the nonzero elements: {A.row}\")\n",
        "print(f\"Get the column indices of the nonzero elements: {A.col}\")\n",
        "print(f\"Get the coordinate (COO) representation: {A.coo()}\")\n",
        "print(f\"Get the compressed sparse row (CSR) representation: {A.csr()}\")\n",
        "print(f\"Get the compressed sparse column (CSC) representation: {A.csc()}\")"
      ],
      "metadata": {
        "id": "OKbFiWKIzZVe"
      },
      "execution_count": null,
      "outputs": []
    },
    {
      "cell_type": "markdown",
      "source": [
        "**dtype and/or device conversion**"
      ],
      "metadata": {
        "id": "VzosM7i3yQPK"
      }
    },
    {
      "cell_type": "code",
      "source": [
333
334
        "i = torch.tensor([[0, 1, 1, 2],\n",
        "                  [1, 0, 2, 0]])\n",
335
        "val = torch.tensor([1., 2., 3., 4.])\n",
336
        "A = dglsp.spmatrix(i, val)\n",
337
        "\n",
Hongzhi (Steve), Chen's avatar
Hongzhi (Steve), Chen committed
338
        "B = A.to(device='cpu', dtype=torch.int32)\n",
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
        "print(f\"Device sparse matrix is stored on: {B.device}\")\n",
        "print(f\"Datatype of sparse matrix: {B.dtype}\")"
      ],
      "metadata": {
        "id": "y_RJihw-ypXp"
      },
      "execution_count": null,
      "outputs": []
    },
    {
      "cell_type": "markdown",
      "source": [
        "Similar to pytorch, we also provide various fine-grained APIs ([Doc](https://docs.dgl.ai/en/latest/api/python/dgl.sparse_v0.html)) for dtype and/or device conversion."
      ],
      "metadata": {
        "id": "U26arLlJzfkN"
      }
    },
    {
      "cell_type": "markdown",
      "source": [
        "## Diagonal Matrix\n",
        "\n",
        "Diagonal Matrix is a special type of Sparse Matrix, in which the entries outside the main diagonal are all zero.\n",
        "\n",
        "\n"
      ],
      "metadata": {
        "id": "EFe9ABRuWHqf"
      }
    },
    {
      "cell_type": "markdown",
      "source": [
        "### Initializing a DGL Diagonal Matrix\n",
        "A DGL Diagonal Matrix can be initiate by `dglsp.diag()`.\n",
        "\n",
        "Identity Matrix is a special type of Diagonal Matrix, in which all the value on the diagonal are 1.0. Use `dglsp.identity()` to initiate a Diagonal Matrix."
      ],
      "metadata": {
        "id": "1CeCoE2Fgl_x"
      }
    },
    {
      "cell_type": "code",
      "source": [
        "val = torch.tensor([1., 2., 3., 4.])\n",
        "D = dglsp.diag(val)\n",
        "print(D)\n",
        "\n",
        "I = dglsp.identity(shape=(3, 3))\n",
        "print(I)"
      ],
      "metadata": {
        "id": "9wzJNApahXAR"
      },
      "execution_count": null,
      "outputs": []
    },
    {
      "cell_type": "markdown",
      "source": [
        "### Attributes and methods of a DGL Diagonal Matrix"
      ],
      "metadata": {
        "id": "s-JpSHGLhWlm"
      }
    },
    {
      "cell_type": "code",
      "source": [
        "val = torch.tensor([1., 2., 3., 4.])\n",
        "D = dglsp.diag(val)\n",
        "\n",
        "print(f\"Shape of sparse matrix: {D.shape}\")\n",
        "print(f\"The number of nonzero elements of sparse matrix: {D.nnz}\")\n",
        "print(f\"Datatype of sparse matrix: {D.dtype}\")\n",
        "print(f\"Device sparse matrix is stored on: {D.device}\")\n",
        "print(f\"Get the values of the nonzero elements: {D.val}\")"
      ],
      "metadata": {
        "id": "QMV0u-kQWsWd"
      },
      "execution_count": null,
      "outputs": []
    },
    {
      "cell_type": "markdown",
      "source": [
        "## Operations on Sparse Matrix and Diagonal Matrix\n",
        "*   Elementwise operations\n",
        "    *   `A + B`\n",
        "    *   `A - B`\n",
        "    *   `A * B`\n",
        "    *   `A / B`\n",
        "    *   `A ** scalar`\n",
        "*   Reduce operations\n",
        "    *   `reduce()`\n",
        "    *   `sum()`\n",
        "    *   `smax()`\n",
        "    *   `smin()`\n",
        "    *   `smean()`\n",
        "*   Matrix transformations\n",
        "    *   `SparseMatrix.transpose()` or `SparseMatrix.T`\n",
        "    *   `SparseMatrix.neg()`\n",
        "    *   `DiagMatrix.transpose()` or `DiagMatrix.T`\n",
        "    *   `DiagMatrix.neg()`\n",
        "    *   `DiagMatrix.inv()`\n",
        "*   Matrix multiplication\n",
        "    *   `matmul()`\n",
        "    *   `sddmm()`\n",
        "\n",
        "\n",
        "*We are using dense format to print sparse matrix in this tutorial since it is more intuitive to read.*"
      ],
      "metadata": {
        "id": "Tjsapqp6zSFR"
      }
    },
    {
      "cell_type": "markdown",
      "source": [
        "### *Elementwise operations*"
      ],
      "metadata": {
        "id": "psvGwcIqYvC2"
      }
    },
    {
      "cell_type": "markdown",
      "source": [
        "**add(A, B), equivalent to A + B**\n",
        "\n",
        "The supported combinations are shown as follows.\n",
        "\n",
474
        "A \\\\ B          | **DiagMatrix**|**SparseMatrix**|**scalar**\n",
475
        "----------------|---------------|----------------|----------\n",
476
477
478
        "**DiagMatrix**  |✔️             |✔️              |❌\n",
        "**SparseMatrix**|✔️             |✔️              |❌\n",
        "**scalar**      |❌             |❌              |❌"
479
480
481
482
483
484
485
486
      ],
      "metadata": {
        "id": "39YJitpW-K9v"
      }
    },
    {
      "cell_type": "code",
      "source": [
487
488
        "i = torch.tensor([[1, 1, 2],\n",
        "                  [0, 2, 0]])\n",
489
        "val = torch.tensor([1., 2., 3.])\n",
490
        "A1 = dglsp.spmatrix(i, val, shape=(3, 3))\n",
491
492
493
        "print(\"A1:\")\n",
        "print(A1.to_dense())\n",
        "\n",
494
495
        "i = torch.tensor([[0, 1, 2],\n",
        "                  [0, 2, 1]])\n",
496
        "val = torch.tensor([4., 5., 6.])\n",
497
        "A2 = dglsp.spmatrix(i, val, shape=(3, 3))\n",
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
        "print(\"A2:\")\n",
        "print(A2.to_dense())\n",
        "\n",
        "val = torch.tensor([-1., -2., -3.])\n",
        "D1 = dglsp.diag(val)\n",
        "print(\"D1:\")\n",
        "print(D1.to_dense())\n",
        "\n",
        "val = torch.tensor([-4., -5., -6.])\n",
        "D2 = dglsp.diag(val)\n",
        "print(\"D2:\")\n",
        "print(D2.to_dense())\n",
        "\n",
        "print(\"A1 + A2:\")\n",
        "print((A1 + A2).to_dense())\n",
        "\n",
        "print(\"A1 + D1:\")\n",
        "print((A1 + D1).to_dense())\n",
        "\n",
        "print(\"D1 + D2:\")\n",
        "print((D1 + D2).to_dense())"
      ],
      "metadata": {
        "id": "pj3Ckx41-BSu"
      },
      "execution_count": null,
      "outputs": []
    },
    {
      "cell_type": "markdown",
      "source": [
529
        "**sub(A, B), equivalent to A - B**\n",
530
531
532
        "\n",
        "The supported combinations are shown as follows.\n",
        "\n",
533
        "A \\\\ B          | **DiagMatrix**|**SparseMatrix**|**scalar**\n",
534
        "----------------|---------------|----------------|----------\n",
535
536
537
        "**DiagMatrix**  |✔️             |✔️              |❌\n",
        "**SparseMatrix**|✔️             |✔️              |❌\n",
        "**scalar**      |❌             |❌              |❌"
538
539
540
541
542
543
544
545
      ],
      "metadata": {
        "id": "i25N0JHUTUX9"
      }
    },
    {
      "cell_type": "code",
      "source": [
546
547
        "i = torch.tensor([[1, 1, 2],\n",
        "                  [0, 2, 0]])\n",
548
        "val = torch.tensor([1., 2., 3.])\n",
549
        "A1 = dglsp.spmatrix(i, val, shape=(3, 3))\n",
550
551
552
        "print(\"A1:\")\n",
        "print(A1.to_dense())\n",
        "\n",
553
554
        "i = torch.tensor([[0, 1, 2],\n",
        "                  [0, 2, 1]])\n",
555
        "val = torch.tensor([4., 5., 6.])\n",
556
        "A2 = dglsp.spmatrix(i, val, shape=(3, 3))\n",
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
        "print(\"A2:\")\n",
        "print(A2.to_dense())\n",
        "\n",
        "val = torch.tensor([-1., -2., -3.])\n",
        "D1 = dglsp.diag(val)\n",
        "print(\"D1:\")\n",
        "print(D1.to_dense())\n",
        "\n",
        "val = torch.tensor([-4., -5., -6.])\n",
        "D2 = dglsp.diag(val)\n",
        "print(\"D2:\")\n",
        "print(D2.to_dense())\n",
        "\n",
        "print(\"A1 - A2:\")\n",
        "print((A1 - A2).to_dense())\n",
        "\n",
        "print(\"A1 - D1:\")\n",
        "print((A1 - D1).to_dense())\n",
        "\n",
        "print(\"D1 - A1:\")\n",
        "print((D1 - A1).to_dense())\n",
        "\n",
        "print(\"D1 - D2:\")\n",
        "print((D1 - D2).to_dense())"
      ],
      "metadata": {
        "id": "GMxfz-cyT129"
      },
      "execution_count": null,
      "outputs": []
    },
    {
      "cell_type": "markdown",
      "source": [
        "**mul(A, B), equivalent to A * B**\n",
        "\n",
        "The supported combinations are shown as follows.\n",
        "\n",
595
        "A \\\\ B          | **DiagMatrix**|**SparseMatrix**|**scalar**\n",
596
        "----------------|---------------|----------------|----------\n",
597
598
599
        "**DiagMatrix**  |✔️             |❌              |✔️\n",
        "**SparseMatrix**|❌             |❌              |✔️\n",
        "**scalar**      |✔️             |✔️              |❌"
600
601
602
603
604
605
606
607
      ],
      "metadata": {
        "id": "bg45jnq8T9EJ"
      }
    },
    {
      "cell_type": "code",
      "source": [
608
609
        "i = torch.tensor([[1, 1, 2],\n",
        "                  [0, 2, 0]])\n",
610
        "val = torch.tensor([1., 2., 3.])\n",
611
        "A = dglsp.spmatrix(i, val, shape=(3, 3))\n",
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
        "print(\"A:\")\n",
        "print(A.to_dense())\n",
        "\n",
        "print(\"A * 3:\")\n",
        "print((A * 3).to_dense())\n",
        "print(\"3 * A:\")\n",
        "print((3 * A).to_dense())\n",
        "\n",
        "val = torch.tensor([-1., -2., -3.])\n",
        "D1 = dglsp.diag(val)\n",
        "print(\"D1:\")\n",
        "print(D1.to_dense())\n",
        "\n",
        "val = torch.tensor([-4., -5., -6.])\n",
        "D2 = dglsp.diag(val)\n",
        "print(\"D2:\")\n",
        "print(D2.to_dense())\n",
        "\n",
        "print(\"D1 * -2:\")\n",
        "print((D1 * -2).to_dense())\n",
        "print(\"-2 * D1:\")\n",
        "print((-2 * D1).to_dense())\n",
        "\n",
        "print(\"D1 * D2:\")\n",
        "print((D1 * D2).to_dense())"
      ],
      "metadata": {
        "id": "4PAITJqHUB8J"
      },
      "execution_count": null,
      "outputs": []
    },
    {
      "cell_type": "markdown",
      "source": [
        "**div(A, B), equivalent to A / B**\n",
        "\n",
        "The supported combinations are shown as follows.\n",
        "\n",
651
        "A \\\\ B          | **DiagMatrix**|**SparseMatrix**|**scalar**\n",
652
        "----------------|---------------|----------------|----------\n",
653
654
655
        "**DiagMatrix**  |✔️             |❌              |✔️\n",
        "**SparseMatrix**|❌             |❌              |✔️\n",
        "**scalar**      |❌             |❌              |❌"
656
657
658
659
660
661
662
663
      ],
      "metadata": {
        "id": "Xb2RU6H4UBCs"
      }
    },
    {
      "cell_type": "code",
      "source": [
664
665
        "i = torch.tensor([[1, 1, 2],\n",
        "                  [0, 2, 0]])\n",
666
        "val = torch.tensor([1., 2., 3.])\n",
667
        "A = dglsp.spmatrix(i, val, shape=(3, 3))\n",
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
        "print(\"A:\")\n",
        "print(A.to_dense())\n",
        "\n",
        "print(\"A / 2:\")\n",
        "print((A / 2).to_dense())\n",
        "\n",
        "val = torch.tensor([-1., -2., -3.])\n",
        "D1 = dglsp.diag(val)\n",
        "print(\"D1:\")\n",
        "print(D1.to_dense())\n",
        "\n",
        "val = torch.tensor([-4., -5., -6.])\n",
        "D2 = dglsp.diag(val)\n",
        "print(\"D2:\")\n",
        "print(D2.to_dense())\n",
        "\n",
        "print(\"D1 / D2:\")\n",
        "print((D1 / D2).to_dense())\n",
        "\n",
        "print(\"D1 / 2:\")\n",
        "print((D1 / 2).to_dense())"
      ],
      "metadata": {
        "id": "TFB_UcmEUdr3"
      },
      "execution_count": null,
      "outputs": []
    },
    {
      "cell_type": "markdown",
      "source": [
        "**power(A, B), equivalent to A \\*\\* B**\n",
        "\n",
        "The supported combinations are shown as follows.\n",
        "\n",
703
        "A \\\\ B          | **DiagMatrix**|**SparseMatrix**|**scalar**\n",
704
        "----------------|---------------|----------------|----------\n",
705
706
707
        "**DiagMatrix**  |❌             |❌              |✔️\n",
        "**SparseMatrix**|❌             |❌              |✔️\n",
        "**scalar**      |❌             |❌              |❌"
708
709
710
711
712
713
714
715
      ],
      "metadata": {
        "id": "2lZbyTYUUgSi"
      }
    },
    {
      "cell_type": "code",
      "source": [
716
717
        "i = torch.tensor([[1, 1, 2],\n",
        "                  [0, 2, 0]])\n",
718
        "val = torch.tensor([1., 2., 3.])\n",
719
        "A = dglsp.spmatrix(i, val, shape=(3, 3))\n",
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
        "print(\"A:\")\n",
        "print(A.to_dense())\n",
        "\n",
        "print(\"A ** 3:\")\n",
        "print((A ** 3).to_dense())\n",
        "\n",
        "val = torch.tensor([-1., -2., -3.])\n",
        "D = dglsp.diag(val)\n",
        "print(\"D:\")\n",
        "print(D.to_dense())\n",
        "\n",
        "print(\"D1 ** 2:\")\n",
        "print((D1 ** 2).to_dense())"
      ],
      "metadata": {
        "id": "ox-XxCnuUqAy"
      },
      "execution_count": null,
      "outputs": []
    },
    {
      "cell_type": "markdown",
      "source": [
        "### *Reduce operations*\n",
        "\n",
        "All DGL sparse reduce operations only consider non-zero elements. To distinguish them from dense PyTorch reduce operations that consider zero elements, we use name `smax`, `smin` and `smean` (`s` stands for sparse)."
      ],
      "metadata": {
        "id": "TQJJlctZjYPv"
      }
    },
    {
      "cell_type": "code",
      "source": [
754
755
        "i = torch.tensor([[0, 1, 1, 2],\n",
        "                  [1, 0, 2, 0]])\n",
756
        "val = torch.tensor([1., 2., 3., 4.])\n",
757
        "A = dglsp.spmatrix(i, val)\n",
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
        "print(A.T.to_dense())\n",
        "print(\"\")\n",
        "\n",
        "# O1, O2 will have the same value.\n",
        "O1 = A.reduce(0, 'sum')\n",
        "O2 = A.sum(0)\n",
        "print(\"Reduce with reducer:sum along dim = 0:\")\n",
        "print(O1)\n",
        "print(\"\")\n",
        "\n",
        "# O3, O4 will have the same value.\n",
        "O3 = A.reduce(0, 'smax')\n",
        "O4 = A.smax(0)\n",
        "print(\"Reduce with reducer:max along dim = 0:\")\n",
        "print(O3)\n",
        "print(\"\")\n",
        "\n",
        "# O5, O6 will have the same value.\n",
        "O5 = A.reduce(0, 'smin')\n",
        "O6 = A.smin(0)\n",
        "print(\"Reduce with reducer:min along dim = 0:\")\n",
        "print(O5)\n",
        "print(\"\")\n",
        "\n",
        "# O7, O8 will have the same value.\n",
        "O7 = A.reduce(0, 'smean')\n",
        "O8 = A.smean(0)\n",
        "print(\"Reduce with reducer:smean along dim = 0:\")\n",
        "print(O7)\n",
        "print(\"\")"
      ],
      "metadata": {
        "id": "GhS49Js1jW4b"
      },
      "execution_count": null,
      "outputs": []
    },
    {
      "cell_type": "markdown",
      "source": [
        "### *Matrix transformations*"
      ],
      "metadata": {
        "id": "kanwnB7LOQui"
      }
    },
    {
      "cell_type": "markdown",
      "source": [
        "*Sparse Matrix*"
      ],
      "metadata": {
        "id": "NiiXso9elM2p"
      }
    },
    {
      "cell_type": "code",
      "source": [
816
817
        "i = torch.tensor([[0, 1, 1, 2],\n",
        "                  [1, 0, 2, 0]])\n",
818
        "val = torch.tensor([1., 2., 3., 4.])\n",
819
        "A = dglsp.spmatrix(i, val)\n",
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
        "print(A.to_dense())\n",
        "print(\"\")\n",
        "\n",
        "print(\"Get transpose of sparse matrix.\")\n",
        "print(A.T.to_dense())\n",
        "# Alias\n",
        "# A.transpose()\n",
        "# A.t()\n",
        "print(\"\")\n",
        "\n",
        "print(\"Get a sparse matrix with the negation of the original nonzero values.\")\n",
        "print(A.neg().to_dense())\n",
        "print(\"\")"
      ],
      "metadata": {
        "id": "qJcmZHmf-oTY"
      },
      "execution_count": null,
      "outputs": []
    },
    {
      "cell_type": "markdown",
      "source": [
        "*Diagonal Matrix*"
      ],
      "metadata": {
        "id": "iE3ANjFolIJu"
      }
    },
    {
      "cell_type": "code",
      "source": [
        "val = torch.tensor([1., 2., 3., 4.])\n",
        "D = dglsp.diag(val)\n",
        "print(D.to_dense())\n",
        "print(\"\")\n",
        "\n",
        "print(\"Get inverse of diagonal matrix:\")\n",
        "print(D.inv().to_dense())\n",
        "print(\"\")\n",
        "\n",
        "print(\"Get a diagonal matrix with the negation of the original nonzero values.\")\n",
        "print(D.neg().to_dense())\n",
        "print(\"\")"
      ],
      "metadata": {
        "id": "j9kjY9RdlGXx"
      },
      "execution_count": null,
      "outputs": []
    },
    {
      "cell_type": "markdown",
      "source": [
        "### *Matrix multiplication*"
      ],
      "metadata": {
        "id": "4uQlDFb0Uzto"
      }
    },
    {
      "cell_type": "markdown",
      "source": [
        "**matmul(A, B), equivalent to A @ B**\n",
        "\n",
        "The supported combinations are shown as follows.\n",
        "\n",
887
        "A \\\\ B          | **Tensor**|**DiagMatrix**|**SparseMatrix**\n",
888
        "----------------|-----------|--------------|----------\n",
889
890
891
        "**Tensor**      |✔️         |❌            |❌\n",
        "**DiagMatrix**  |✔️         |✔️            |✔️\n",
        "**SparseMatrix**|✔️         |✔️            |✔️"
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
      ],
      "metadata": {
        "id": "THWE30v6WpAk"
      }
    },
    {
      "cell_type": "markdown",
      "source": [
        "**Union[DiagMatrix, SparseMatrix] @ Union[DiagMatrix, SparseMatrix] -> Union[SparseMatrix, DiagMatrix]:**\n",
        "\n",
        "For a $L \\times M$ sparse matrix A and a $M \\times N$ sparse matrix B, the shape of `A @ B` will be $L \\times N$ sparse matrix."
      ],
      "metadata": {
        "id": "VxyykR-vX7lF"
      }
    },
    {
      "cell_type": "code",
      "source": [
911
912
        "i = torch.tensor([[1, 1, 2],\n",
        "                  [0, 2, 0]])\n",
913
        "val = torch.tensor([1., 2., 3.])\n",
914
        "A1 = dglsp.spmatrix(i, val, shape=(3, 3))\n",
915
916
917
        "print(\"A1:\")\n",
        "print(A1.to_dense())\n",
        "\n",
918
919
        "i = torch.tensor([[0, 1, 2],\n",
        "                  [0, 2, 1]])\n",
920
        "val = torch.tensor([4., 5., 6.])\n",
921
        "A2 = dglsp.spmatrix(i, val, shape=(3, 3))\n",
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
        "print(\"A2:\")\n",
        "print(A2.to_dense())\n",
        "\n",
        "val = torch.tensor([-1., -2., -3.])\n",
        "D1 = dglsp.diag(val)\n",
        "print(\"D1:\")\n",
        "print(D1.to_dense())\n",
        "\n",
        "val = torch.tensor([-4., -5., -6.])\n",
        "D2 = dglsp.diag(val)\n",
        "print(\"D2:\")\n",
        "print(D2.to_dense())\n",
        "\n",
        "print(\"A1 @ A2:\")\n",
        "print((A1 @ A2).to_dense())\n",
        "\n",
        "print(\"A1 @ D1:\")\n",
        "print((A1 @ D1).to_dense())\n",
        "\n",
        "print(\"D1 @ A1:\")\n",
        "print((D1 @ A1).to_dense())\n",
        "\n",
        "print(\"D1 @ D2:\")\n",
        "print((D1 @ D2).to_dense())"
      ],
      "metadata": {
        "id": "XRDFC2rOYQM4"
      },
      "execution_count": null,
      "outputs": []
    },
    {
      "cell_type": "markdown",
      "source": [
        "**Union[DiagMatrix, SparseMatrix] @ Tensor -> Tensor:**\n",
        "\n",
        "For a $L \\times M$ sparse matrix A and a $M \\times N$ dense matrix B, the shape of `A @ B` will be $L \\times N$ dense matrix."
      ],
      "metadata": {
        "id": "g13fG8nvaVOt"
      }
    },
    {
      "cell_type": "code",
      "source": [
967
968
        "i = torch.tensor([[1, 1, 2],\n",
        "                  [0, 2, 0]])\n",
969
        "val = torch.tensor([1., 2., 3.])\n",
970
        "A = dglsp.spmatrix(i, val, shape=(3, 3))\n",
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
        "print(\"A:\")\n",
        "print(A.to_dense())\n",
        "\n",
        "val = torch.tensor([-1., -2., -3.])\n",
        "D = dglsp.diag(val)\n",
        "print(\"D:\")\n",
        "print(D.to_dense())\n",
        "\n",
        "X = torch.tensor([[11., 22.], [33., 44.], [55., 66.]])\n",
        "print(\"X:\")\n",
        "print(X)\n",
        "\n",
        "print(\"A @ X:\")\n",
        "print(A @ X)\n",
        "\n",
        "print(\"D @ X:\")\n",
        "print(D @ X)"
      ],
      "metadata": {
        "id": "FcQ-CnqdlgWF"
      },
      "execution_count": null,
      "outputs": []
    },
    {
      "cell_type": "markdown",
      "source": [
        "This operator also supports batched sparse-dense matrix multiplication. The sparse matrix A should have shape $L \\times M$, where the non-zero values are vectors of length $K$. The dense matrix B should have shape $M \\times N \\times K$. The output is a dense matrix of shape $L \\times N \\times K$."
      ],
      "metadata": {
        "id": "_KZiULLbmEZE"
      }
    },
    {
      "cell_type": "code",
      "source": [
1007
1008
        "i = torch.tensor([[1, 1, 2],\n",
        "                  [0, 2, 0]])\n",
1009
        "val = torch.tensor([[1., 1.], [2., 2.], [3., 3.]])\n",
1010
        "A = dglsp.spmatrix(i, val, shape=(3, 3))\n",
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
        "print(\"A:\")\n",
        "print(A.to_dense())\n",
        "\n",
        "X = torch.tensor([[[1., 1.], [1., 2.]],\n",
        "                  [[1., 3.], [1., 4.]],\n",
        "                  [[1., 5.], [1., 6.]]])\n",
        "print(\"X:\")\n",
        "print(X)\n",
        "\n",
        "print(\"A @ X:\")\n",
        "print(A @ X)"
      ],
      "metadata": {
        "id": "ZUzXQk7Ab2wG"
      },
      "execution_count": null,
      "outputs": []
    },
    {
      "cell_type": "markdown",
      "source": [
1032
        "**Sampled-Dense-Dense Matrix Multiplication (SDDMM)**\n",
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
        "\n",
        "``sddmm`` matrix-multiplies two dense matrices X1 and X2, then elementwise-multiplies the result with sparse matrix A at the nonzero locations. This is designed for sparse matrix with scalar values.\n",
        "\n",
        "$$out = (X_1 @ X_2) * A$$\n",
        "\n",
        "For a $L \\times N$ sparse matrix A, a $L \\times M$ dense matrix X1 and a $M \\times N$ dense matrix X2, `sddmm(A, X1, X2)` will be a $L \\times N$ sparse matrix."
      ],
      "metadata": {
        "id": "qO_8f_vhPKtf"
      }
    },
    {
      "cell_type": "code",
      "source": [
1047
1048
        "i = torch.tensor([[1, 1, 2],\n",
        "                  [2, 3, 3]])\n",
1049
        "val = torch.tensor([1., 2., 3.])\n",
1050
        "A = dglsp.spmatrix(i, val, (3, 4))\n",
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
        "print(\"A:\")\n",
        "print(A.to_dense())\n",
        "\n",
        "X1 = torch.randn(3, 5)\n",
        "X2 = torch.randn(5, 4)\n",
        "print(\"X1:\")\n",
        "print(X1)\n",
        "print(\"X2:\")\n",
        "print(X2)\n",
        "\n",
        "O = dglsp.sddmm(A, X1, X2)\n",
        "print(\"dglsp.sddmm(A, X1, X2):\")\n",
        "print(O.to_dense())"
      ],
      "metadata": {
        "id": "3ZIFV0TgPhwH"
      },
      "execution_count": null,
      "outputs": []
    },
    {
      "cell_type": "markdown",
      "source": [
        "This operator also supports batched sampled-dense-dense matrix multiplication. For a $L \\times N$ sparse matrix A with non-zero vector values of length $𝐾$, a $L \\times M \\times K$ dense matrix X1 and a $M \\times N \\times K$ dense matrix X2, `sddmm(A, X1, X2)` will be a $L \\times N \\times K$ sparse matrix."
      ],
      "metadata": {
        "id": "RmNmXU_ZqyF7"
      }
    },
    {
      "cell_type": "code",
      "source": [
1083
1084
        "i = torch.tensor([[1, 1, 2],\n",
        "                  [2, 3, 3]])\n",
1085
        "val = torch.tensor([[1., 1.], [2., 2.], [3., 3.]])\n",
1086
        "A = dglsp.spmatrix(i, val, (3, 4))\n",
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
        "print(\"A:\")\n",
        "print(A.to_dense())\n",
        "\n",
        "X1 = torch.randn(3, 5, 2)\n",
        "X2 = torch.randn(5, 4, 2)\n",
        "print(\"X1:\")\n",
        "print(X1)\n",
        "print(\"X2:\")\n",
        "print(X2)\n",
        "\n",
        "O = dglsp.sddmm(A, X1, X2)\n",
        "print(\"dglsp.sddmm(A, X1, X2):\")\n",
        "print(O.to_dense())"
      ],
      "metadata": {
        "id": "DuSAjamyrIO_"
      },
      "execution_count": null,
      "outputs": []
    },
    {
      "cell_type": "markdown",
      "source": [
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
        "## Non-linear activation functions"
      ],
      "metadata": {
        "id": "fVkbTT28ZzPr"
      }
    },
    {
      "cell_type": "markdown",
      "source": [
        "### Element-wise functions\n",
1120
        "\n",
1121
1122
1123
        "Most activation functions are element-wise and can be further grouped into two categories:\n",
        "\n",
        "**Sparse-preserving functions** such as `sin()`, `tanh()`, `sigmoid()`, `relu()`, etc. You can directly apply them on the `val` tensor of the sparse matrix and then recreate a new matrix of the same sparsity using `val_like`."
1124
1125
1126
1127
1128
      ],
      "metadata": {
        "id": "XuaNdFO7XG2r"
      }
    },
1129
1130
1131
    {
      "cell_type": "code",
      "source": [
1132
1133
        "i = torch.tensor([[0, 1, 1, 2],\n",
        "                  [1, 0, 2, 0]])\n",
1134
        "val = torch.randn(4)\n",
1135
        "A = dglsp.spmatrix(i, val)\n",
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
        "print(A.to_dense())\n",
        "\n",
        "print(\"Apply tanh.\")\n",
        "A_new = dglsp.val_like(A, torch.tanh(A.val))\n",
        "print(A_new.to_dense())"
      ],
      "metadata": {
        "id": "GZkCJJ0TX0cI"
      },
      "execution_count": null,
      "outputs": []
    },
    {
      "cell_type": "markdown",
      "source": [
        "**Non-sparse-preserving functions** such as `exp()`, `cos()`, etc. You can first convert the sparse matrix to dense before applying the functions."
      ],
      "metadata": {
        "id": "i92lhMEnYas3"
      }
    },
    {
      "cell_type": "code",
      "source": [
1160
1161
        "i = torch.tensor([[0, 1, 1, 2],\n",
        "                  [1, 0, 2, 0]])\n",
1162
        "val = torch.randn(4)\n",
1163
        "A = dglsp.spmatrix(i, val)\n",
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
        "print(A.to_dense())\n",
        "\n",
        "print(\"Apply exp.\")\n",
        "A_new = A.to_dense().exp()\n",
        "print(A_new)"
      ],
      "metadata": {
        "id": "sroJpzRNYZq5"
      },
      "execution_count": null,
      "outputs": []
    },
1176
1177
1178
    {
      "cell_type": "markdown",
      "source": [
1179
        "### Softmax\n",
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
        "\n",
        "Apply row-wise softmax to the nonzero entries of the sparse matrix."
      ],
      "metadata": {
        "id": "y8OQZReVXpo3"
      }
    },
    {
      "cell_type": "code",
      "source": [
1190
1191
        "i = torch.tensor([[0, 1, 1, 2],\n",
        "                  [1, 0, 2, 0]])\n",
1192
        "val = torch.tensor([1., 2., 3., 4.])\n",
1193
        "A = dglsp.spmatrix(i, val)\n",
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
        "\n",
        "print(A.softmax())\n",
        "print(\"In dense format:\")\n",
        "print(A.softmax().to_dense())\n",
        "print(\"\\n\")"
      ],
      "metadata": {
        "id": "CQaKgzCJULjt"
      },
      "execution_count": null,
      "outputs": []
    },
    {
      "cell_type": "markdown",
      "source": [
        "## Exercise"
      ],
      "metadata": {
        "id": "1iBNlJVYz3zi"
      }
    },
    {
      "cell_type": "markdown",
      "source": [
        "*Let's test what you've learned. Feel free to [![Open In Colab](https://colab.research.google.com/assets/colab-badge.svg)](https://colab.research.google.com/github/dmlc/dgl/blob/master/notebooks/sparse/quickstart.ipynb).*\n",
        "\n",
        "Given a sparse symmetrical adjacency matrix $A$, calculate its symmetrically normalized adjacency matrix: $$norm = \\hat{D}^{-\\frac{1}{2}}\\hat{A}\\hat{D}^{-\\frac{1}{2}}$$\n",
        "\n",
        "Where $\\hat{A} = A + I$, $I$ is the identity matrix, and $\\hat{D}$ is the diagonal node degree matrix of $\\hat{A}$."
      ],
      "metadata": {
        "id": "yDQ4Kmr_08St"
      }
    },
    {
      "cell_type": "code",
      "source": [
1231
1232
1233
        "i = torch.tensor([[0, 0, 1, 1, 2, 2, 3],\n",
        "                  [1, 3, 2, 5, 3, 5, 4]])\n",
        "asym_A = dglsp.spmatrix(i, shape=(6, 6))\n",
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
        "# Step 1: create symmetrical adjacency matrix A from asym_A.\n",
        "# A =\n",
        "\n",
        "# Step 2: calculate A_hat from A.\n",
        "# A_hat =\n",
        "\n",
        "# Step 3: diagonal node degree matrix of A_hat\n",
        "# D_hat =\n",
        "\n",
        "# Step 4: calculate the norm from D_hat and A_hat.\n",
        "# norm = "
      ],
      "metadata": {
        "id": "0dDhfbJo0ByV"
      },
      "execution_count": null,
      "outputs": []
    }
  ]
1253
}