test_subgraph_sampler.py 9 KB
Newer Older
1
import dgl.graphbolt as gb
2
3
4
import gb_test_utils
import pytest
import torch
5
from torchdata.datapipes.iter import Mapper
6
7


8
9
def test_SubgraphSampler_invoke():
    itemset = gb.ItemSet(torch.arange(10), names="seed_nodes")
10
    item_sampler = gb.ItemSampler(itemset, batch_size=2)
11
12

    # Invoke via class constructor.
13
    datapipe = gb.SubgraphSampler(item_sampler)
14
15
16
17
    with pytest.raises(NotImplementedError):
        next(iter(datapipe))

    # Invokde via functional form.
18
    datapipe = item_sampler.sample_subgraph()
19
20
21
22
23
24
    with pytest.raises(NotImplementedError):
        next(iter(datapipe))


@pytest.mark.parametrize("labor", [False, True])
def test_NeighborSampler_invoke(labor):
25
    graph = gb_test_utils.rand_csc_graph(20, 0.15, bidirection_edge=True)
26
    itemset = gb.ItemSet(torch.arange(10), names="seed_nodes")
27
    item_sampler = gb.ItemSampler(itemset, batch_size=2)
28
29
30
31
32
    num_layer = 2
    fanouts = [torch.LongTensor([2]) for _ in range(num_layer)]

    # Invoke via class constructor.
    Sampler = gb.LayerNeighborSampler if labor else gb.NeighborSampler
33
    datapipe = Sampler(item_sampler, graph, fanouts)
34
35
36
37
    assert len(list(datapipe)) == 5

    # Invokde via functional form.
    if labor:
38
        datapipe = item_sampler.sample_layer_neighbor(graph, fanouts)
39
    else:
40
        datapipe = item_sampler.sample_neighbor(graph, fanouts)
41
42
43
    assert len(list(datapipe)) == 5


44
45
@pytest.mark.parametrize("labor", [False, True])
def test_NeighborSampler_fanouts(labor):
46
    graph = gb_test_utils.rand_csc_graph(20, 0.15, bidirection_edge=True)
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
    itemset = gb.ItemSet(torch.arange(10), names="seed_nodes")
    item_sampler = gb.ItemSampler(itemset, batch_size=2)
    num_layer = 2

    # `fanouts` is a list of tensors.
    fanouts = [torch.LongTensor([2]) for _ in range(num_layer)]
    if labor:
        datapipe = item_sampler.sample_layer_neighbor(graph, fanouts)
    else:
        datapipe = item_sampler.sample_neighbor(graph, fanouts)
    assert len(list(datapipe)) == 5

    # `fanouts` is a list of integers.
    fanouts = [2 for _ in range(num_layer)]
    if labor:
        datapipe = item_sampler.sample_layer_neighbor(graph, fanouts)
    else:
        datapipe = item_sampler.sample_neighbor(graph, fanouts)
    assert len(list(datapipe)) == 5


68
69
@pytest.mark.parametrize("labor", [False, True])
def test_SubgraphSampler_Node(labor):
70
    graph = gb_test_utils.rand_csc_graph(20, 0.15, bidirection_edge=True)
71
72
    itemset = gb.ItemSet(torch.arange(10), names="seed_nodes")
    item_sampler = gb.ItemSampler(itemset, batch_size=2)
73
74
    num_layer = 2
    fanouts = [torch.LongTensor([2]) for _ in range(num_layer)]
75
    Sampler = gb.LayerNeighborSampler if labor else gb.NeighborSampler
76
    sampler_dp = Sampler(item_sampler, graph, fanouts)
77
    assert len(list(sampler_dp)) == 5
78
79


80
def to_link_batch(data):
81
    block = gb.MiniBatch(node_pairs=data)
82
    return block
83
84


85
86
@pytest.mark.parametrize("labor", [False, True])
def test_SubgraphSampler_Link(labor):
87
    graph = gb_test_utils.rand_csc_graph(20, 0.15, bidirection_edge=True)
88
89
    itemset = gb.ItemSet(torch.arange(0, 20).reshape(-1, 2), names="node_pairs")
    item_sampler = gb.ItemSampler(itemset, batch_size=2)
90
91
    num_layer = 2
    fanouts = [torch.LongTensor([2]) for _ in range(num_layer)]
92
    Sampler = gb.LayerNeighborSampler if labor else gb.NeighborSampler
93
    neighbor_dp = Sampler(item_sampler, graph, fanouts)
94
    assert len(list(neighbor_dp)) == 5
95
96


97
@pytest.mark.parametrize("labor", [False, True])
98
def test_SubgraphSampler_Link_With_Negative(labor):
99
    graph = gb_test_utils.rand_csc_graph(20, 0.15, bidirection_edge=True)
100
101
    itemset = gb.ItemSet(torch.arange(0, 20).reshape(-1, 2), names="node_pairs")
    item_sampler = gb.ItemSampler(itemset, batch_size=2)
102
103
    num_layer = 2
    fanouts = [torch.LongTensor([2]) for _ in range(num_layer)]
104
    negative_dp = gb.UniformNegativeSampler(item_sampler, graph, 1)
105
106
    Sampler = gb.LayerNeighborSampler if labor else gb.NeighborSampler
    neighbor_dp = Sampler(negative_dp, graph, fanouts)
107
    assert len(list(neighbor_dp)) == 5
108
109


110
111
112
113
114
115
116
def get_hetero_graph():
    # COO graph:
    # [0, 0, 1, 1, 2, 2, 3, 3, 4, 4]
    # [2, 4, 2, 3, 0, 1, 1, 0, 0, 1]
    # [1, 1, 1, 1, 0, 0, 0, 0, 0] - > edge type.
    # num_nodes = 5, num_n1 = 2, num_n2 = 3
    ntypes = {"n1": 0, "n2": 1}
117
    etypes = {"n1:e1:n2": 0, "n2:e2:n1": 1}
118
119
120
121
122
    metadata = gb.GraphMetadata(ntypes, etypes)
    indptr = torch.LongTensor([0, 2, 4, 6, 8, 10])
    indices = torch.LongTensor([2, 4, 2, 3, 0, 1, 1, 0, 0, 1])
    type_per_edge = torch.LongTensor([1, 1, 1, 1, 0, 0, 0, 0, 0, 0])
    node_type_offset = torch.LongTensor([0, 2, 5])
123
    return gb.from_fused_csc(
124
125
126
127
128
129
        indptr,
        indices,
        node_type_offset=node_type_offset,
        type_per_edge=type_per_edge,
        metadata=metadata,
    )
130
131


132
133
134
135
136
137
138
139
140
141
142
143
144
@pytest.mark.parametrize("labor", [False, True])
def test_SubgraphSampler_Node_Hetero(labor):
    graph = get_hetero_graph()
    itemset = gb.ItemSetDict(
        {"n2": gb.ItemSet(torch.arange(3), names="seed_nodes")}
    )
    item_sampler = gb.ItemSampler(itemset, batch_size=2)
    num_layer = 2
    fanouts = [torch.LongTensor([2]) for _ in range(num_layer)]
    Sampler = gb.LayerNeighborSampler if labor else gb.NeighborSampler
    sampler_dp = Sampler(item_sampler, graph, fanouts)
    assert len(list(sampler_dp)) == 2
    for minibatch in sampler_dp:
peizhou001's avatar
peizhou001 committed
145
        assert len(minibatch.sampled_subgraphs) == num_layer
146
147


148
149
@pytest.mark.parametrize("labor", [False, True])
def test_SubgraphSampler_Link_Hetero(labor):
150
151
152
    graph = get_hetero_graph()
    itemset = gb.ItemSetDict(
        {
153
            "n1:e1:n2": gb.ItemSet(
154
155
                torch.LongTensor([[0, 0, 1, 1], [0, 2, 0, 1]]).T,
                names="node_pairs",
156
            ),
157
            "n2:e2:n1": gb.ItemSet(
158
159
                torch.LongTensor([[0, 0, 1, 1, 2, 2], [0, 1, 1, 0, 0, 1]]).T,
                names="node_pairs",
160
161
162
            ),
        }
    )
163

164
    item_sampler = gb.ItemSampler(itemset, batch_size=2)
165
166
    num_layer = 2
    fanouts = [torch.LongTensor([2]) for _ in range(num_layer)]
167
    Sampler = gb.LayerNeighborSampler if labor else gb.NeighborSampler
168
    neighbor_dp = Sampler(item_sampler, graph, fanouts)
169
    assert len(list(neighbor_dp)) == 5
170
171


172
@pytest.mark.parametrize("labor", [False, True])
173
def test_SubgraphSampler_Link_Hetero_With_Negative(labor):
174
175
176
    graph = get_hetero_graph()
    itemset = gb.ItemSetDict(
        {
177
            "n1:e1:n2": gb.ItemSet(
178
179
                torch.LongTensor([[0, 0, 1, 1], [0, 2, 0, 1]]).T,
                names="node_pairs",
180
            ),
181
            "n2:e2:n1": gb.ItemSet(
182
183
                torch.LongTensor([[0, 0, 1, 1, 2, 2], [0, 1, 1, 0, 0, 1]]).T,
                names="node_pairs",
184
185
186
187
            ),
        }
    )

188
    item_sampler = gb.ItemSampler(itemset, batch_size=2)
189
190
    num_layer = 2
    fanouts = [torch.LongTensor([2]) for _ in range(num_layer)]
191
    negative_dp = gb.UniformNegativeSampler(item_sampler, graph, 1)
192
193
    Sampler = gb.LayerNeighborSampler if labor else gb.NeighborSampler
    neighbor_dp = Sampler(negative_dp, graph, fanouts)
194
    assert len(list(neighbor_dp)) == 5
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215


@pytest.mark.parametrize("labor", [False, True])
def test_SubgraphSampler_Random_Hetero_Graph(labor):
    num_nodes = 5
    num_edges = 9
    num_ntypes = 3
    num_etypes = 3
    (
        csc_indptr,
        indices,
        node_type_offset,
        type_per_edge,
        metadata,
    ) = gb_test_utils.random_hetero_graph(
        num_nodes, num_edges, num_ntypes, num_etypes
    )
    edge_attributes = {
        "A1": torch.randn(num_edges),
        "A2": torch.randn(num_edges),
    }
216
    graph = gb.from_fused_csc(
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
        csc_indptr,
        indices,
        node_type_offset,
        type_per_edge,
        edge_attributes,
        metadata,
    )
    itemset = gb.ItemSetDict(
        {
            "n2": gb.ItemSet(torch.tensor([0]), names="seed_nodes"),
            "n1": gb.ItemSet(torch.tensor([1]), names="seed_nodes"),
        }
    )

    item_sampler = gb.ItemSampler(itemset, batch_size=2)
    num_layer = 2
    fanouts = [torch.LongTensor([2]) for _ in range(num_layer)]
    Sampler = gb.LayerNeighborSampler if labor else gb.NeighborSampler
    sampler_dp = Sampler(item_sampler, graph, fanouts, replace=True)

    for data in sampler_dp:
        for sampledsubgraph in data.sampled_subgraphs:
            for _, value in sampledsubgraph.node_pairs.items():
                assert torch.equal(
                    torch.ge(value[0], torch.zeros(len(value[0]))),
                    torch.ones(len(value[0])),
                )
                assert torch.equal(
                    torch.ge(value[1], torch.zeros(len(value[1]))),
                    torch.ones(len(value[1])),
                )
            for _, value in sampledsubgraph.original_column_node_ids.items():
                assert torch.equal(
                    torch.ge(value, torch.zeros(len(value))),
                    torch.ones(len(value)),
                )
            for _, value in sampledsubgraph.original_row_node_ids.items():
                assert torch.equal(
                    torch.ge(value, torch.zeros(len(value))),
                    torch.ones(len(value)),
                )