test_feature_fetcher.py 6.95 KB
Newer Older
1
2
import random

3
4
import dgl.graphbolt as gb
import gb_test_utils
5
import torch
6
from torchdata.datapipes.iter import Mapper
7
8


9
10
def test_FeatureFetcher_invoke():
    # Prepare graph and required datapipes.
11
    graph = gb_test_utils.rand_csc_graph(20, 0.15, bidirection_edge=True)
12
13
14
15
16
17
    a = torch.tensor(
        [[random.randint(0, 10)] for _ in range(graph.total_num_nodes)]
    )
    b = torch.tensor(
        [[random.randint(0, 10)] for _ in range(graph.total_num_edges)]
    )
18
19
20
21
22
23
24
25

    features = {}
    keys = [("node", None, "a"), ("edge", None, "b")]
    features[keys[0]] = gb.TorchBasedFeature(a)
    features[keys[1]] = gb.TorchBasedFeature(b)
    feature_store = gb.BasicFeatureStore(features)

    itemset = gb.ItemSet(torch.arange(10), names="seed_nodes")
26
    item_sampler = gb.ItemSampler(itemset, batch_size=2)
27
28
29
30
    num_layer = 2
    fanouts = [torch.LongTensor([2]) for _ in range(num_layer)]

    # Invoke FeatureFetcher via class constructor.
31
    datapipe = gb.NeighborSampler(item_sampler, graph, fanouts)
32
33
34
35
    datapipe = gb.FeatureFetcher(datapipe, feature_store, ["a"], ["b"])
    assert len(list(datapipe)) == 5

    # Invoke FeatureFetcher via functional form.
36
    datapipe = item_sampler.sample_neighbor(graph, fanouts).fetch_feature(
37
38
39
40
41
        feature_store, ["a"], ["b"]
    )
    assert len(list(datapipe)) == 5


42
def test_FeatureFetcher_homo():
43
    graph = gb_test_utils.rand_csc_graph(20, 0.15, bidirection_edge=True)
44
45
46
47
48
49
    a = torch.tensor(
        [[random.randint(0, 10)] for _ in range(graph.total_num_nodes)]
    )
    b = torch.tensor(
        [[random.randint(0, 10)] for _ in range(graph.total_num_edges)]
    )
50

51
52
53
54
55
56
    features = {}
    keys = [("node", None, "a"), ("edge", None, "b")]
    features[keys[0]] = gb.TorchBasedFeature(a)
    features[keys[1]] = gb.TorchBasedFeature(b)
    feature_store = gb.BasicFeatureStore(features)

57
58
    itemset = gb.ItemSet(torch.arange(10), names="seed_nodes")
    item_sampler = gb.ItemSampler(itemset, batch_size=2)
59
60
    num_layer = 2
    fanouts = [torch.LongTensor([2]) for _ in range(num_layer)]
61
    sampler_dp = gb.NeighborSampler(item_sampler, graph, fanouts)
62
    fetcher_dp = gb.FeatureFetcher(sampler_dp, feature_store, ["a"], ["b"])
63
64
65
66
67

    assert len(list(fetcher_dp)) == 5


def test_FeatureFetcher_with_edges_homo():
68
    graph = gb_test_utils.rand_csc_graph(20, 0.15, bidirection_edge=True)
69
70
71
72
73
74
    a = torch.tensor(
        [[random.randint(0, 10)] for _ in range(graph.total_num_nodes)]
    )
    b = torch.tensor(
        [[random.randint(0, 10)] for _ in range(graph.total_num_edges)]
    )
75
76
77
78
79

    def add_node_and_edge_ids(seeds):
        subgraphs = []
        for _ in range(3):
            subgraphs.append(
80
                gb.FusedSampledSubgraphImpl(
81
                    node_pairs=(torch.tensor([]), torch.tensor([])),
82
83
84
                    original_edge_ids=torch.randint(
                        0, graph.total_num_edges, (10,)
                    ),
85
86
                )
            )
87
        data = gb.MiniBatch(input_nodes=seeds, sampled_subgraphs=subgraphs)
88
89
90
91
92
93
94
95
96
        return data

    features = {}
    keys = [("node", None, "a"), ("edge", None, "b")]
    features[keys[0]] = gb.TorchBasedFeature(a)
    features[keys[1]] = gb.TorchBasedFeature(b)
    feature_store = gb.BasicFeatureStore(features)

    itemset = gb.ItemSet(torch.arange(10))
97
98
    item_sampler_dp = gb.ItemSampler(itemset, batch_size=2)
    converter_dp = Mapper(item_sampler_dp, add_node_and_edge_ids)
99
    fetcher_dp = gb.FeatureFetcher(converter_dp, feature_store, ["a"], ["b"])
100
101
102

    assert len(list(fetcher_dp)) == 5
    for data in fetcher_dp:
103
104
105
106
        assert data.node_features["a"].size(0) == 2
        assert len(data.edge_features) == 3
        for edge_feature in data.edge_features:
            assert edge_feature["b"].size(0) == 10
107
108
109
110
111
112
113
114
115


def get_hetero_graph():
    # COO graph:
    # [0, 0, 1, 1, 2, 2, 3, 3, 4, 4]
    # [2, 4, 2, 3, 0, 1, 1, 0, 0, 1]
    # [1, 1, 1, 1, 0, 0, 0, 0, 0] - > edge type.
    # num_nodes = 5, num_n1 = 2, num_n2 = 3
    ntypes = {"n1": 0, "n2": 1}
116
    etypes = {"n1:e1:n2": 0, "n2:e2:n1": 1}
117
118
119
120
121
    metadata = gb.GraphMetadata(ntypes, etypes)
    indptr = torch.LongTensor([0, 2, 4, 6, 8, 10])
    indices = torch.LongTensor([2, 4, 2, 3, 0, 1, 1, 0, 0, 1])
    type_per_edge = torch.LongTensor([1, 1, 1, 1, 0, 0, 0, 0, 0, 0])
    node_type_offset = torch.LongTensor([0, 2, 5])
122
    return gb.from_fused_csc(
123
124
125
126
127
128
        indptr,
        indices,
        node_type_offset=node_type_offset,
        type_per_edge=type_per_edge,
        metadata=metadata,
    )
129
130


131
132
def test_FeatureFetcher_hetero():
    graph = get_hetero_graph()
133
134
    a = torch.tensor([[random.randint(0, 10)] for _ in range(2)])
    b = torch.tensor([[random.randint(0, 10)] for _ in range(3)])
135

136
137
138
139
140
    features = {}
    keys = [("node", "n1", "a"), ("node", "n2", "a")]
    features[keys[0]] = gb.TorchBasedFeature(a)
    features[keys[1]] = gb.TorchBasedFeature(b)
    feature_store = gb.BasicFeatureStore(features)
141

142
143
    itemset = gb.ItemSetDict(
        {
144
145
            "n1": gb.ItemSet(torch.LongTensor([0, 1]), names="seed_nodes"),
            "n2": gb.ItemSet(torch.LongTensor([0, 1, 2]), names="seed_nodes"),
146
147
        }
    )
148
    item_sampler = gb.ItemSampler(itemset, batch_size=2)
149
150
    num_layer = 2
    fanouts = [torch.LongTensor([2]) for _ in range(num_layer)]
151
    sampler_dp = gb.NeighborSampler(item_sampler, graph, fanouts)
152
153
154
    fetcher_dp = gb.FeatureFetcher(
        sampler_dp, feature_store, {"n1": ["a"], "n2": ["a"]}
    )
155

156
157
158
159
    assert len(list(fetcher_dp)) == 3


def test_FeatureFetcher_with_edges_hetero():
160
161
    a = torch.tensor([[random.randint(0, 10)] for _ in range(20)])
    b = torch.tensor([[random.randint(0, 10)] for _ in range(50)])
162
163
164

    def add_node_and_edge_ids(seeds):
        subgraphs = []
165
        original_edge_ids = {
166
167
            "n1:e1:n2": torch.randint(0, 50, (10,)),
            "n2:e2:n1": torch.randint(0, 50, (10,)),
168
169
170
        }
        for _ in range(3):
            subgraphs.append(
171
                gb.FusedSampledSubgraphImpl(
172
                    node_pairs=(torch.tensor([]), torch.tensor([])),
173
                    original_edge_ids=original_edge_ids,
174
175
                )
            )
176
        data = gb.MiniBatch(input_nodes=seeds, sampled_subgraphs=subgraphs)
177
        return data
178

179
180
181
182
183
    features = {}
    keys = [("node", "n1", "a"), ("edge", "n1:e1:n2", "a")]
    features[keys[0]] = gb.TorchBasedFeature(a)
    features[keys[1]] = gb.TorchBasedFeature(b)
    feature_store = gb.BasicFeatureStore(features)
184

185
186
187
188
189
    itemset = gb.ItemSetDict(
        {
            "n1": gb.ItemSet(torch.randint(0, 20, (10,))),
        }
    )
190
191
    item_sampler_dp = gb.ItemSampler(itemset, batch_size=2)
    converter_dp = Mapper(item_sampler_dp, add_node_and_edge_ids)
192
193
194
    fetcher_dp = gb.FeatureFetcher(
        converter_dp, feature_store, {"n1": ["a"]}, {"n1:e1:n2": ["a"]}
    )
195
196

    assert len(list(fetcher_dp)) == 5
197
    for data in fetcher_dp:
198
199
200
        assert data.node_features[("n1", "a")].size(0) == 2
        assert len(data.edge_features) == 3
        for edge_feature in data.edge_features:
201
            assert edge_feature[("n1:e1:n2", "a")].size(0) == 10